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A Data Construction Details

Tech Distance. Bloom, Schankerman, and Van Reenen (2013) propose a va-
riety of metrics for distance. We follow their construction. Proximity between
two competing firms in the product market space is the correlation of the firms’
distribution of sales across their industry segments. Technology proximity is anal-
ogously defined as the correlation of patent USPTO technology classes between
firms, following earlier work by Jaffe (1986). The quantities of innovation by
competitors and close innovators are the stocks of innovation weighted by these
correlations. The stock of innovation is constructed using a perpetual-inventory
approach. Both measures are extended using the Mahalanobis distance to allow
for flexible weighting of the correlation between firms across different technology
or product market classes. Further details on the measures of spillovers can be
found in Bloom, Schankerman, and Van Reenen (2013).

Value of Spillovers. We obtain information on the quantity of competition
spillovers (variable spillsic) as well as technological spillovers (variable spilltec)
from the replication files in Bloom, Schankerman, and Van Reenen (2013). The
exposure to spillovers from product market, spillsic, is defined as the correlation
of the sales across two firms’ Compustat segments. If we consider the vector of
average sales share across each industry for a given firm i, Si, product market
proximity between firm i and j is defined by the uncentered correlation: sicij =

SiS
′
j/
(√

SiS′
i

√
SjS′

j

)
. The product market spillover is the average stock of

R&D that is in the product market proximity of firm i:

spillsici =
∑
j ̸=i

sicijGj ,

where Gj is the stock of R&D for firm j. The exposure to knowledge spillovers is
constructed the same way, where we define for firm i a vector of share of patents
across technology classes from the USPTO as Ti. The uncentered correlation

of technology between firm i and j is: techij = TiT
′
j/
(√

TiT′
i

√
TjT′

j

)
. The

product market spillover is the average stock of R&D that is in the product
market proximity of firm i:

spilltechi =
∑
j ̸=i

techijGj .

To look at the effect of spillovers, we use sales item from Compustat funda file
and Tobin’s q (market-to-book ratio) from the CRSP-Compustat merged file.

Compustat Segments. We merge the Compustat funda file with the Com-
pustat segments file. We estimate the number of segments with different industry
codes. The Compustat segments file provides both a six- and a four-digit indus-
try code, which gives two measures of the number of different types of industries
within a public firm.
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B Further Discussion of the Model

B.1 Microfoundations

The allocation of production slots is the key assumption to capture the notion
of business-stealing. Indeed, firms do not internalize that they might take over
the slot of another firm. The assumption of a fixed mass of production slots
is especially plausible in industries that depend heavily on innovation. For in-
stance, intellectual property law often provides exclusive use of a technology to
its inventor.1 We can interpret the fixed production slots as corresponding to a
fixed number of M processes to produce the homogeneous good. The first firm
to discover a process gets its exclusive use, and the speed of discovery is perfectly
correlated with the productivity type a. Alternatively, we can assume that to
produce, a firm needs one unit of an indivisible good that has not been discovered
yet, and that only M of these exist in nature. Again firms with a higher type a
find the ingredient faster.2 Our assumption relies more generally on scarcity in
the ability to produce that is not internalized by individual firms. We show in
Internet Appendix Section D how our results hold for a wide range of models of
business stealing. In particular, we show that the rigidity of a fixed number of
active firms M is not necessary to our conclusions.

B.2 Calculation of Spillovers

Computing the spillovers in the model is challenging because the baseline model
of Section 3 does not feature unexpected entry: the number of firms is determin-
istic in equilibrium. We overcome this challenge by introducing the possibility
that some blueprints randomly fail to be implemented. Formally, after firm cre-
ators purchase blueprints but before they introduce these blueprints to public
markets, a fraction of them disappear. If Me blueprints are created, either they
all succeed or a mass ∆ fails, with probability 1 − ε and ε, respectively. By
focusing on the limit when ε and ∆ go to zero, we trace out the equilibrium
effect of the unanticipated entry of an atomistic firm on the total value of the
economy.

Comparing the total market value of the economy across the two outcomes,
we obtain the total effect of an extra firm on the value of the economy:

lim
∆→0

MeV
(n)(Me)− (Me −∆)V (n)(Me −∆)

∆
= V (n)(Me) +MeV

(n)′(Me)

(IA.1)

The outcome-based value of this measure is simply obtained by replacing n by 1
in this expression. The first term is the direct effect: the private value of a new

1Another motivation for the incompleteness is the difficulty of establishing markets for what has not been
encountered yet. It is often the case that nobody owns something before it is discovered. For instance, how
could we trade nuclear power before Henri Becquerel, Marie Curie, and Pierre Curie discovered radioactivity?

2Network goods or industries facing institutional constraints can face similar frictions in the allocations
of productive positions that lead to a business-stealing effect—see Borjas and Doran (2012) for evidence in
the context of scientific research.
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firm V (n)(Me). The second term is the change in the value of all other firms in
response to the entry of the new firm. Each of the Me firms in the economy sees
its value decrease by V (n)′(Me). Taking the ratio of the direct and the indirect
effect, we obtain the two measures of spillovers in equations (12) and (13).

C Asymptotics

We now consider the limiting case of high speculation: n → ∞. This case is ex-
treme: the total quantity of entry goes to infinity. However, it is useful because it
gives rise to sharp characterizations of the spillovers, allowing us to highlight the
distinction between market-based and outcome-based spillovers with disagree-
ment.

In our derivations, we will make use of the change of variable:

V (n) =

∫ ∞

a
aηγna−γ−1

(
1− a−γ

)n−1
da

= γnaη−γ

∫ ∞

1
tη−γ−1

(
1− a−γt−γ

)n−1
dt. (IA.2)

Proposition C.1. In the high-disagreement limit (n → ∞), the market-based
spillover converges to a finite limit that depends on the sign of γθ − η:

• If γθ > η, the market-based spillover vanishes: limn→∞ spillmkt(n) = 0

• If γθ < η, then τ converges to the spillover in the agreement case (n = 1):
limn→∞ spillmkt(n) = −γ−η

γ

• In the knife-edge case of γθ = η, limn→∞ spillmkt(n) = ˇspillmkt > −γ−η
γ , where ˇspillmkt is

defined in Appendix equation (IA.4).

Figure IA.1 illustrates these cases.
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Figure IA.1
Market-based spillover with increasing disagreement.

We use the following two lemmas to prove Proposition C.1.
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Lemma C.1. If θ ≥ 0, then as disagreement increases (n → ∞), the mass of
entrants also increases and goes to infinity: limn→∞Me = ∞.

Proof. We define an = (Me/M)1/γ , where Me now depends on n, and show that
an → ∞. Equations (11) and (IA.2) imply an implicit definition of the sequence
an:

fea
γ(θ+1)−η
n = γn

∫ ∞

1
tη−γ−1

(
1− a−γ

n t−γ
)n−1

dt.

Suppose an has a finite limit that is strictly larger than zero, i.e., a∞ > 0.3 Then
there exists N large enough such that ∀n > N , an > A = a∞− ϵ > 0. We obtain
a lower bound for the right-hand side of the implicit equation above:

In = γn

∫ ∞

1
tη−γ−1

(
1− a−γt−γ

)n−1
dt

> γn

∫ ∞

1
tη−γ−1

(
1−A−γt−γ

)n−1
dt.

Consider an arbitrary threshold Tn that depends on n and satisfies:

In > γn

∫ ∞

Tn

tη−γ−1
(
1−A−γt−γ

)n−1
dt

> γn
(
1−A−γT−γ

n

)n−1
∫ ∞

Tn

tη−γ−1dt

=
γ

γ − η
· n · T η−γ

n

(
1−A−γT−γ

n

)n−1
.

Choose the threshold Tn = n1/γ . The bound becomes:

In >
γ

γ − η
· n

η
γ exp

(
−(n− 1) log(1−A−γn−1)

)
>

γ

γ − η
· n

η
γ exp

(
−(n− 1)A−γn−1 +O(n−1)

)
.

Since γ(θ + 1)− η ≥ γ − η > 0, this implies In → ∞, contradicting a∞ < ∞.

Lemma C.2 (Asymptotics for firm creation). In the high-disagreement limit
(n → ∞), we have the following asymptotics for the mass of firms created, Me:

• If γθ < η, then Me/M =
(

1
fe

γ
γ−η · n

) γ
γ(θ+1)−η

.

• If γθ = η, then limn→∞Me/M = α∞n, where α∞ is a constant defined below.

Proof. Substituting a into (11), we have:

fe = γaη−γ(θ+1)n

∫ ∞

1
tη−γ−1

(
1− a−γt−γ

)n−1
dt

≃ γaη−γ(θ+1)n

∫ ∞

1
tη−γ−1 exp

(
−(n− 1)a−γt−γ

)
dt,

3Since the mass of firms producing cannot be higher than the mass of firms created, an ≥ 1.
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where we have used the fact that a → ∞ from Lemma C.2, and log(1 − x) =
−x + O(x2). To find a solution, we guess the asymptotics of a(n). We rewrite
a = α(n)n1/(γ(1+θ)−η) and show that α(n) converges to a finite limit α. The
above equation becomes:

fe = γα(n)η−γ(θ+1)

∫ ∞

1
tη−γ−1 exp

(
−α(n)−γ n− 1

n
γ

γ(1+θ)−η

t−γ

)
dt.

Suppose γθ < η. Then the exponential term converges to zero and we have:

fe = γαη−γ(θ+1)

∫ ∞

1
tη−γ−1dt = αη−γ(θ+1) γ

γ − η
,

such that we have the following asymptotics for firm entry:

Me

M
=

(
1

fe

γ

γ − η
· n
) γ

γ(θ+1)−η

. (IA.3)

Suppose γθ = η. Then a is defined by:

fe = γa−γ
n n

∫ ∞

1
tη−γ−1

(
1− a−γt−γ

)n−1
dt.

Since a = (Me/M)1/γ , it is sufficient to guess and verify that an = α(n)−1/γn1/γ ,
and α(n) has a finite limit α∞ defined by:

fe = γα(n)

∫ ∞

1
tη−γ−1 exp

(
−(n− 1)(α(n)n−1 +O(α(n)2n−2))t−γ

)
dt

−−−→
n→∞

γα∞

∫ ∞

1
tη−γ−1e−α∞t−γ

dt,

where we take the limit when n → ∞. The outcome-based spillover implies:

fe > γα∞e−α∞

∫ ∞

1
tη−γ−1dt > α∞e−α∞ γ

γ − η
,

and thus

α∞e−α∞

fe
<

γ − η

γ
, (IA.4)

which implies a finite bound on α∞.

Using the asymptotics derived in Lemma C.2, we now prove Proposition C.1.

Proof. (Proposition C.1) Suppose γθ < η. Substitute the asymptotics derived
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in equation (IA.3) into the formula for the market-based spillover:

spillmkt(n;Me) = −
M
Me

(
Me
M

) η
γ n
(
1− M

Me

)n−1

fe
(
Me
M

)θ (IA.5)

≃ − 1

fe
· fe

γ − η

γ

1

n
· n
(
1− M

Me

)n−1

→ −γ − η

γ
, (IA.6)

where we have used the fact that (1 − M/Me)
n−1 → 1.4 The market-based

spillover therefore converges to the outcome-based spillover in this case.
Now suppose γθ > η. We write the market-based spillover directly:

spillmkt(n;Me) = −naη−γ(1− a−γ)n−1

feaγθ
.

First suppose a → ∞. We rewrite the competitive equilibrium condition of
equation (11):

na−γ =
fea

γθ−η

γ
∫∞
1 tη−γ−1(1− a−γt−γ)n−1dt

.

The denominator is bounded from above by γ
∫∞
1 tη−γ−1dt, which implies na →

∞. Using a first-order approximation, we have:

(1− a−γ)n−1 ≃ exp
(
−na−γ

)
.

Therefore, the market-based spillover in the limit is:

spillmkt(n) ≃ −na−γ exp (−na−γ)

feaγθ−η
→ 0, (IA.7)

since the numerator goes to zero and the denominator goes to infinity. Suppose
instead that a has a finite limit. We obtain the expression for spillmkt:

spillmkt(n) = −n(1− a−γ)n−1

feaγ(1+θ)−η
= −n exp ((n− 1) log(1− a−γ))

feaγ(1+θ)−η
→ 0, (IA.8)

since the denominator has a finite limit and the numerator goes to 0.
Lastly, consider the case where γθ = η. The spillover expression simplifies to:

spillmkt(n) = − 1

fe
· na−γ

(
1− a−γ

)n−1
.

4This follows from (1−M/Me)
n−1 = exp [−(n− 1) log(Me/M)] and using the asymptotics derived above

for γθ < η: (1−M/Me)
n−1 = exp

[
−(n− 1)

(
f−1
e

γ
γ−ηn

)− γ
γ(1+θ)−η

]
→ 1.
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Using Lemma C.2 and the result that a−γ = α(n)/n, and α(n) → α∞, we have:

spillmkt(n) ≃ − 1

fe
α(n) exp (−(n− 1)α(n)/n) (IA.9)

≃ − 1

fe
α(n) exp (−α(n)) → − 1

fe
α∞e−α∞ . (IA.10)

Moreover, using Lemma C.2, this also proves that in the limit, the magnitude
of the market-based spillover |spillmkt| is less than that of the outcome-based
spillover |spillout| = (γ − η)/γ.

D Extensions

We now consider several extensions of the model:

• Appendix D.1 allows for a more general form of the business-stealing effect. Instead of having
a single cutoff below which firms do not produce, we allow firms to produce with a probability
that decreases with their rank in the economy.

• Appendix D.2 breaks the result in our baseline that marginal firm earns positive profits.
Instead, firms compete for the production slots, which yields a zero-cutoff-profit condition for
the marginal firm.

• Appendix D.3 considers three ways endogenize the profit function of equation (4): labor with
decreasing returns to scale, Dixit-Stiglitz aggregate demand, and knowledge spillovers. These
models introduce additional sources of spillovers.

• Appendix D.4 considers situations with a variable number of participating firms.

• Appendix D.5 introduces participation costs to provide an alternative microfoundation for a
zero-cutoff-profit condition. We derive results for both the baseline model and the model of
Appendix D.3 as in Melitz (2003).

These extensions serve three purposes. First, they show the robustness of our
results. Next, they show implications of our model of disagreement for spillovers
beyond the business-stealing effect that we focus on in the main text. Finally,
they provide further examples of the tractability of our framework.

D.1 Generalizing the Business-Stealing Effect

Our results are robust to more general functions for the business-stealing effect.
In particular, suppose the expected profit of a firm with productivity a is:

π(a) = aηδ (r(a,Me)) ,

where r(a,Me) ≡ (1− F (a))Me is the ranking of the firm, or the mass of firms
with productivity greater than a. The function δ is the probability of producing
conditional on a firm’s ranking r. The main text focused on the special case of
δ(r) = 1 {r ≤ M}.
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D.1.1 Outcome-Based Spillover

Lemma D.1. The outcome-based spillover does not depend on the level of entry:

spillout = −γ − η

γ
. (IA.11)

Proof. Under agreement, n = 1, and we can derive an exact solution for the mass
of firms entering in equilibrium Me. Integrating by parts, the value of a firm is:

V (1)(Me) =

∫ ∞

1
γxη−γ−1δ(Mex

−γ)dx

=
γ

γ − η

[
δ(Me)− γMe

∫ ∞

1
xη−2γ−1δ′(Mex

−γ)dx

]
.

In addition, we have:

Me
dV (1)

dMe
= γMe

∫ ∞

1
xη−2γ−1δ′(Mex

−γ)dx.

Recalling that spillout = Me
dV (1)

dMe
/V (1), we have the desired formula (IA.11).

D.1.2 Disagreement Asymptotics with Multiple Cutoffs

We now consider the generalization of δ to allow for multiple cutoffs. In par-
ticular, suppose we have cutoffs a1 < ... < aK , with ak ≡ F−1(1 − Mk

Me
), and

constants ∆1, ...,∆K so that

δ(r) =
K∑
k=1

∆k1 {r ≤ Mk} . (IA.12)

Notice that this imples that V (n) =
∑K

k=1∆kV
(n)
k , where V

(n)
k ≡

∫∞
ak

aηdFn(a),

and

−Me
dV (n)

dMe
= −

K∑
k=1

(
∆k

Mk

Me
· aη · F

′
n

F ′ (ak)

)
.

For convenience, we normalize the cost of producing blueprints so that W (b) =
feb

θ+1M−θ
K /(θ + 1).

Lemma D.2. Holding Me constant, the outcome-based spillover is larger than
the market-based spillover.

Proof. Apply the proof for Proposition 1 for each k.

Theorem D.3 (Asymptotics for the market-based spillover with multiple cut-
offs). With business-stealing of the form (IA.12), in the high-disagreement limit
(n → ∞), the market-based spillover converges to a finite limit.

• If γθ < η, then spillmkt(n) → −(γ − η)/γ.

• If γθ > η, then spillmkt(n) → 0.
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• If γθ = η, then spillmkt(n) → − 1
fe

∑K
k=1

[
∆k (MK/Mk)

(η−γ)/γ α∞ exp (−α∞Mk/MK)
]
.

Proof. Suppose γθ < η. Conjecturing as before that we can write aK =
α(n)n1/(γ(1+θ)−η) yields

fe ≃
K∑
k=1

∆k

(
Mk

MK

) γ−η
γ

αη−γ(θ+1) γ

γ − η
.

Therefore, we have the asymptotics for firm entry:

Me

MK
=

[
1

fe

K∑
k=1

∆k

(
Mk

MK

) γ−η
γ γ

γ − η
· n

] γ
γ(θ+1)−η

.

Substituting this into the formula for the market-based spillover, we have

spillmkt(n) = −

∑K
k=1∆k

(
Mk
Me

) γ−η
γ

n
(
1− Mk

Me

)n−1

fe

(
Me
MK

)θ → −γ − η

γ
(IA.13)

as desired.
Now suppose γθ > η. Then we have

spillmkt(n) = −
n
∑K

k=1 a
η−γ
k

(
a−γ
k

)n−1

fea
γθ
K

= −
n
∑K

k=1

(
MK
Mk

) η−γ
γ

a−γ
K

(
1− Mk

MK
a−γ
K

)n−1

fea
γθ−η
K

Suppose aK → ∞. Then we can write the first-order condition for firm creation
as:

fea
γθ−η
K

na−γ
K

=

K∑
k=1

∆k

(
MK

Mk

) η−γ
γ

γ

∫ ∞

1
tη−γ−1

(
1− a−γ

k t−γ
)n−1

dt.

Since the integral on the right-hand side is bounded from above by
∫∞
1 tη−γ−1dt,

we have that na−γ
K → ∞, which implies that we can use a similar approximation

to the proof of Proposition C.1 to show that:

spillmkt(n) ≃ −
n
∑K

k=1

(
MK
Mk

) η−γ
γ

a−γ
K exp

(
−n Mk

MK
a−γ
K

)
fea

γθ−η
K

→ 0. (IA.14)

Finally, suppose γθ = η. We then have

fe =

K∑
k=1

∆kγn

(
MK

Mk

) η−γ
γ

a−γ
K

∫ ∞

1
tη−γ−1

(
1− Mk

MK
a−γ
K t−γ

)
.
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As before, we conjecture that aK = α(n)−1/γn1/γ . Then

fe ≃
K∑
k=1

∆k

(
MK

Mk

) η−γ
γ

γα(n)

∫ ∞

1
tη−γ−1 exp

[
−(n− 1)α(n)n−1 Mk

MK
t−γ

]
dt

→
K∑
k=1

∆k

(
MK

Mk

) η−γ
γ

γα∞

∫ ∞

1
tη−γ−1 exp

[
− Mk

MK
α∞t−γ

]
dt.

By analogous reasoning to the proof in Proposition C.1, we can obtain a finite
bound on α∞. We therefore have the market-based spillover:

spillmkt(n) = − 1

fe

K∑
k=1

[
∆kn

(
MK

Mk

) η−γ
γ

a−γ
K

(
1− Mk

MK
a−γ
K

)]

→ − 1

fe

K∑
k=1

[
∆k

(
MK

Mk

) η−γ
γ

α∞

(
1− Mk

MK
α∞

)]
(IA.15)

as desired.

D.1.3 Disagreement Asymptotics with Continuous Business-
Stealing

We now consider a continuous function for the business-stealing effect

δ(r) =

{
1 if r < 1

r−ζ if r ≥ 1
(IA.16)

so that ζ parameterizes the business-stealing effect for low-productivity firms
with r ≥ 1. Larger ζ implies that low-productivity firms have a lower probability
of producing, with ζ = 0 corresponding to the case with no business-stealing
effect. With ζ → ∞, this converges to the benchmark step function business-
stealing effect with M = 1.

We now normalize the cost of producing blueprints, so that W (b) =

feb
θ+1/(θ + 1), and define a ≡ M

1/γ
e to be the cutoff above which δ(a,Me) = 1,

i.e., firms produce with probability one.

It will be convenient to consider the decomposition V (n) = V
(n)
L +V

(n)
U , where

V
(n)
L ≡ γnM−ζ

e

∫ a

1
xη−γ(1−ζ)−1(1− x−γ)n−1dx

V
(n)
U ≡ γn

∫ ∞

a
xη−γ−1(1− x−γ)n−1dx

capture the expected profit conditional on having productivity below and above
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a respectively. We can write

V
(n)
L = γnaη−γ(θ+1)

∫ 1

a−1

tη−γ(1−ζ)−1(1− a−γt−γ)n−1dt (IA.17)

V
(n)
U = γnaη−γ(θ+1)

∫ a−1

1
tη−γ−1(1− a−γt−γ)n−1dt. (IA.18)

Moreover, since

dV
(n)
L

dMe
= −ζM−1

e V
(n)
L + γnM−ζ

e M
η−γ(1−ζ)−1

γ
e

(
1−M−1

e

)n−1

= −ζM−1
e V

(n)
L −

dV
(n)
U

dMe
,

we have that

−Me
dV (n)

dMe
= ζV

(n)
L . (IA.19)

Theorem D.4 (Asymptotics for the market-based spillover with continuous
business-stealing). Suppose we have business stealing of the form (IA.16) and
ζ > γ−η

γ . In the high-disagreement limit (n → ∞), the market-based spillover
converges to a finite limit.

• If γθ < η, then spillmkt(n) → −(γ − η)/γ.

• If γθ ≥ η, then spillmkt(n) → 0.

Proof. Suppose γθ < η. Conjecture that a = α(n)n1/(γ(1+θ)−η). We have from

the proof of Proposition C.1 that V
(n)
U → αη−γ γ

γ−η . In addition, we have from

(IA.17) that V
(n)
U → αη−γ γ

η−γ(1−ζ) . Therefore, we have

fe =

(
γ

γ − η
− γ

γ(1− ζ)− η

)
αη−γ(θ+1), (IA.20)

which verifies the conjecture. We thus have the asymptotic market-based
spillover

spillmkt(n) = −ζ
V

(n)
L

V (n)
→ −γ − η

γ
(IA.21)

as desired.
Suppose γθ > η. Suppose a → ∞. Then we can rewrite equation (11) as:

na−γ =
fea

γθ−η/γ∫ 1
a−1 tη−γ(1−ζ)−1(1− a−γt−γ)n−1dt+

∫∞
1 tη−γ−1(1− a−γt−γ)n−1dt

.

(IA.22)

The two terms in the denominator of the right-hand side are bounded from above
by
∫ 1
0 tη−γ(1−ζ)−1dt and

∫∞
1 tη−γ−1dt, respectively, which implies that na−γ →

11



∞. Using the approximation (1− a−γ)n−1 ≃ exp(−na−γ), we have that

spillmkt(n) = − ζ

feaγθ
V

(n)
L → 0. (IA.23)

If a has a finite limit, we can show that V
(n)
L → 0 since n(1 − a−γt−γ)n−1 → 0

for t ∈ (a−1, 1), which implies that spillmkt(n) → 0 as well.
Suppose γθ = η. Using an analogous proof to Lemma C.2, we can show that

an = α(n)−1/γn1/γ , where α(n) has a finite limit α∞. Since we can bound V
(n)
L

from above by

V
(n)
L = γα(n)

∫ 1

a−1

tη−γ(1−ζ)−1(1− a−γt−γ)n−1dt

≤ γα(n)

∫ 1

a−1

tη−γ(1−ζ)−1dt → γα∞
η − γ(1− ζ)

,

we have that spillmkt(n) = − ζV
(n)
L

feaγθ
→ 0.

D.2 Results with a Zero-Cutoff-Profit Condition

Our results are robust to an extension in which the marginal firm earns zero
profits. Our baseline model specifies that the M most productive firms will
be allowed to produce, which allows for tractability but results in the marginal
firm earning positive profits, π(a) > 0. We now augment the model with an
intermediate stage where firms, after entering the market, compete to be among
one of the M firms producing. The competition stage ensures that the business-
stealing externality remains. We keep the belief and production structure of the
model intact and show that the main features of the spillovers remain unchanged
despite the introduction of a zero-cutoff-profit (ZCP) condition for the marginal
firm.

In the new intermediate decision stage, firms can use some of their produc-
tion as advertisement to reach consumers, a deadweight loss. Only the M firms
that spend the most on advertising produce in equilibrium. Formally, each firm
chooses how much of its production to use on advertisement, hi ≤ π(ai). In
doing so, firms take as given the equilibrium level h of advertising necessary to
attract consumers. Their profit function is therefore π(ai)1{hi ≥ h} − hi. The
optimal advertisement choice is hi = h if π(ai) ≥ h and 0 otherwise. The equilib-
rium value of h is such that exactly M firms choose to spend on advertisement.
Keeping the definition of the production cutoff a from earlier, this implies

h = π(a). (IA.24)

Firms must spend the profits of the marginal firm to be able to produce, resulting
in zero profits for the marginal firm.

12



D.2.1 General Derivations

Firm value in this model is modified to account for the cost of advertisement:

Ṽ (n)(Me) =

∫ ∞

a
(π(a)− π(a)) dFn(a). (IA.25)

We can define the corresponding integral Ĩn. With this new definition of firm
value, the remainder of the competitive equilibrium and the planner problem are
unchanged. In particular, the market-based spillover is spillmkt = EĨn .

Decompose firms’ valuations into the revenue (from (IA.25)) and advertising
cost components:

V (n)(Me) =

∫ ∞

F−1
(
1− M

Me

) π(a)dFn(a)−
(
M

Me

)1− η
γ

· n
(
1− M

Me

)n−1

. (IA.26)

The first derivative of V (n) is:

−Me ·
dV (n)(Me)

dMe
=

η

γ

(
Me

M

) η
γ

·
[
1−

(
1− M

Me

)n]
.

Using the free-entry condition, V (n)(Me) = W ′(Me), we have following formula
for the market-based spillover:

spillmkt(n;Me) =
η

γ
· 1

fe
·
(
Me

M

) η
γ
−θ

·
[
1−

(
1− M

Me

)n]
. (IA.27)

D.2.2 Spillovers and Firm Entry

Lemma D.5. In the model with a ZCP condition, the outcome-based spillover
is:

spillout = −γ − η

γ
.

Proof. The free-entry condition with n = 1 gives us:(
Me

M

) γ(1+θ)−η
γ

=
1

fe
· η

γ − η
.

Given the derivation of the spillover in (IA.27), we have:

spillout(Me) = −η

γ
· 1

fe
·
(
Me

M

) η
γ
−θ

· M

Me
= −γ − η

γ
, (IA.28)

where we have used our equilibrium solution for Me/M .

Lemma D.6. In the high-disagreement limit (n → ∞), the mass of entrants
also increases and goes to infinity: limn→∞Me = ∞.

Proof. We adapt the proof from Lemma C.1, again defining the sequence an =

(Me/M)1/γ and showing that an → ∞. Equation (IA.26) implies the implicit

13



definition of the sequence (an)n in this case:

fea
γ(θ+1)−η
n = γn

∫ ∞

1
tη−γ−1

(
1− a−γ

n t−γ
)n−1

dt− n(1− a−γ
n )n−1.

Assume that an has a finite limit that is strictly larger than zero, a∞ > 0. Then
there exists N large enough such that ∀n > N, an > A = a∞ − ϵ > 0. For any
arbitrary threshold Tn, we have

In > n

[
γ

γ − η
· T η−γ

n

(
1−A−γT−γ

n

)n−1 − 1

]
.

As in Lemma C.1, we conclude by considering the threshold Tn = n1/γ .

Lemma D.7 (Asymptotics for firm creation). In the high-disagreement limit
(n → ∞), we have the following asymptotics for the mass of firms created Me:

• If γθ < η, then limn→∞Me/M = αγ
∞n

γ
γ(1+θ)−η .

• If γθ = η, then limn→∞Me/M = α−1
∞ n.

In each case, α∞ is a constant defined below.

Proof. We adapt the proof from Lemma C.2. Starting from equation (11), and
using a:

fe ≃ γaη−γ(θ+1)n

∫ ∞

1
(tη − 1) t−γ−1 exp

(
−(n− 1)a−γt−γ

)
dt,

where we have used the fact that a → ∞ and log(1− x) = −x+O(x2). To find

a solution, we guess that asymptotically a ≃ α(n)n
1

γ(1+θ)−η and show that α(n)
converges to a finite limit α. The first-order condition becomes

fe ≃ γα(n)η−γ(θ+1)

∫ ∞

1
(tη − 1) t−γ−1 exp

(
−α(n)−γ n− 1

n
γ

γ(1+θ)−η

t−γ

)
dt.

If γθ < η, then the exponential term converges to zero and we have:

α∞ =

(
1

fe
· η

γ − η

) 1
γ(1+θ)−η

. (IA.29)

If γθ = η, then a is defined by:

fe = γa−γ
n n

∫ ∞

1
tη−γ−1

(
1− a−γt−γ

)n−1
dt.

We guess and verify that an = α(n)−1/γn1/γ , and α(n) has a finite limit α∞:

fe = γα∞

∫ ∞

1
(tη − 1) t−γ−1e−α∞t−γ

dt,

where we took the limit when n → ∞. Moreover, we are able to bound the
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magnitude of the market-based spillover above using a bound on α∞:

α∞e−α∞

fe
<

γ − η

η
, (IA.30)

which verifies that α∞ is finite.

We now show that, despite the presence of the ZCP, Proposition C.1 holds.

Theorem D.8. In the high-disagreement limit (n → ∞), the market-based
spillover converges to a finite limit.

• If γθ < η, then spillmkt(n) → −(γ − η)/γ.

• If γθ > η, then spillmkt(n) → 0.

• If γθ = η, then spillmkt(n) → − η
γ

1
fe
e−α∞.

Proof. If γθ > η, then given equation (IA.27), we use that Me → ∞ to conclude
that limn→∞ spillmkt = 0.

If γθ < η, then we can use the asymptotics from D.7 and the formula for the
market-based spillover from (IA.27):

spillmkt(n;Me) ≃ −η

γ

1

fe
αη−θγ
∞ · n

η−θγ
γ(1+θ)−η ·

[
1−

(
1− α−γ

∞ n
−γ

γ(1+θ)−η

)n]
≃ −η

γ

1

fe
αη−θγ
∞ · n

η−θγ
γ(1+θ)−η ·

[
1− exp

(
−α−γ

∞ n
γθ−η

γ(1+θ)−η

)]
≃ −η

γ

1

fe
αη−θγ
∞ · n

η−θγ
γ(1+θ)−η · α−γ

∞ n
γθ−η

γ(1+θ)−η → −η

γ

1

fe
αη−γ(1+θ)
∞ .

(IA.31)

Using the definition of α∞ from the proof above, we conclude
limn→∞ spillmkt(n;Me) = −(γ − η)/γ.

In the knife-edge case with γθ = η, we have

spillmkt(n;Me) ≃ −η

γ

1

fe
·
[
1−

(
1− α∞n−1

)n]→ −η

γ

1

fe
· e−α∞ . (IA.32)

We can bound the market-based spillover in the limit:
limn→∞ |spillmkt(n;Me)| < α−1

∞ · (γ − η)/γ.

Our conclusions are therefore robust to including competition to enter. Intu-
itively, marginal firms drive the externality in both settings. In our baseline, the
externality operates at the extensive margin: more entry displaces the profits of
excluded marginal firms. In this model, the externality is on the intensive margin:
firm entry increases the productivity of the marginal firm and thus advertisement
costs for all producing firms.

D.3 Microfoundation for Profits

In our baseline model, we assumed the profit function of equation (4). We now
endogenize how profits π(a) are determined in equilibrium, which creates new
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sources of spillovers First, when a firm innovates, it not only affects shareholders
but also workers (see, e.g., Kogan et al. (2020) for recent evidence). Next, a new
product alters consumers’ choice over their entire consumption basket (Blan-
chard and Kiyotaki (1987)). Finally, others can learn from this innovation, as
emphasized by Romer (1986). These spillovers, while important, do not change
qualitatively the aggregate behavior of the economy in response to speculation.
Specifically, an increase in disagreement n always yields a bubble and increases
the market-based private value of innovation (in absolute terms and relatively to
the outcome-based measure).

In what follows, it will be convenient to define:

In(Me; η) =

∫ ∞

F (1−Me
M

)
aηdF (a). (IA.33)

In the baseline model, In = V (n).The integral with no disagreement is I1. We
will use In when the dependence of the integral to Me or σ is unambiguous.
Under the Pareto distribution with parameter γ, we have the following result:

I1 =
γ

γ − σ
·
(
Me

M

)σ
γ
−1

. (IA.34)

D.3.1 Models

Labor with decreasing returns to scale. A simple way to endogenize
the profit function is to assume households are endowed with a fixed quantity
of labor L, which firms use to produce a homogeneous good according to a
decreasing returns to scale production function:

y(a) = a · σ

σ − 1
ℓ
σ−1
σ , (IA.35)

where y is firm output, ℓ is firm labor input, and the parameter σ ∈ [1,∞]
controls the returns to scale in labor.

Firms solve

max
ℓ(a)

π(a) = a · σ

σ − 1
ℓ(a)

σ−1
σ − wℓ(a)

taking the equilibrium wage w as given. The firm’s first-order conditions imply:

π(a) =
1

σ − 1
· w1−σaσ. (IA.36)

As in Section 3, profits are isoelastic with respect to productivity a.
Given the equilibrium quantities, we can decompose aggregate output into

the profit and labor shares. First, observe that aggregate ouput is:

C = Me ·
∫ ∞

a
y(a)dF (a) = Me ·

σ

σ − 1
w1−σI1.
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From this expression we can simplify the ex-ante valuation of firms:

V (n)(Me) =

∫ ∞

a
π(a)dFn(a) =

1

σ − 1
· w1−σ · In(Me)

=
1

σ
· C
Me

· In(Me)

I1(Me)
.

In addition, market clearing on the input market yields:

L = Me · w−σ

∫ ∞

a
aσdF (a) = Me · w−σ · I1, (IA.37)

Thus we can decompose consumption for household j into labor income and
profits from its investment:

Cj =
σ − 1

σ
· C

labor income: wL

+
1

σ
· In
I1

· C

firm profits: V (n)

. (IA.38)

The equilibrium condition that determines entry in equilibrium is:

W ′(Me) =
1

σ
· C
Me

· In(Me)

I1(Me)
. (IA.39)

Demand externalities. An additional concern is that goods may not be
perfect substitutes. To that end, we consider monopolistic competition at date
1 in the style of Dixit and Stiglitz (1977). In particular, each firm produces a
differentiated variety indexed by i, and household utility over the set of goods
produced is:

C =

(∫ Me

0

∫ ∞

F−1
(
1− M

Me

) c (a, i)σ−1
σ dF (a)di

) σ
σ−1

. (IA.40)

Firms operate a linear technology in labor, and output for a firm with produc-
tivity a is y = aℓ. We leave our other assumptions unaltered.

At date 1, household j with total expenditure Ej solves:

C(Ej) = max
{c(a,i)}

(∫ Me

0

∫ ∞

F−1
(
1− M

Me

) c (a, i)σ−1
σ dF (a)di

) σ
σ−1

s.t.

∫ Me

0

∫ ∞

F−1
(
1− M

Me

) p (a, i) c (a, i) dF (a)di ≤ Ej ,

which yields the demand curve:

c(p) = Cp−σ.

Firms maximize profits by setting prices, taking as given the demand curve from

17



each household:

max
p(a)

p(a)y (p (a))− wy (p (a))

a
= C

[
p(a)1−σ − w

a
p(a)−σ

]
.

The optimal price is therefore

p(a) =
σ

σ − 1

w

a
.

We can then compute output y, revenue py, labor expenditure wℓ, and profits
π as functions of productivity:

y = Cw−σaσ
(

σ

σ − 1

)−σ

py = Cw1−σaσ−1

(
σ

σ − 1

)1−σ

wℓ =
σ − 1

σ
Cw1−σaσ−1

(
σ

σ − 1

)1−σ

π =
1

σ
Cw1−σaσ−1

(
σ

σ − 1

)1−σ

.

We see that labor expenditure is a fraction (σ − 1)/σ of revenues, and profits
make up the remaining 1/σ share.

Labor market clearing gives C(σ − 1)/σ = wL. In equilibrium, aggregate
expenditure is equal to aggregate consumption, so we have:

C = C
(

σ

σ − 1
w

)1−σ

MeI1(Me, σ − 1)

= M
1

σ−1
e

(
γ

γ − (σ − 1)

) 1
σ−1

(
Me

M

) (σ−1)−γ
(σ−1)γ

· L

=

(
γ

γ − (σ − 1)

) 1
σ−1

M
1

σ−1
− 1

γM
1
γ
e · L.

Therefore, we have EC = Ew = 1/γ. Alternatively, notice that the labor allocation
is efficient with monopolistic competition and the aggregate production function
is homogeneous of degree one in the distribution of productivity. Because an
increase in Me increases all productivities with an elasticity 1/γ, this results in
an elasticity of aggregate consumption of 1/γ.

Knowledge spillovers. As emphasized by Bloom, Schankerman, and
Van Reenen (2013), firms also learn from each other’s innovations. We cap-
ture the role of knowledge spillovers following Romer (1990), by assuming that a
firm’s productivity combines its own type, a, and an aggregate of all the active
firms’ productivity, A:

y =
σ

σ − 1
a1−αAαℓ

σ−1
σ , (IA.41)
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where α is the intensity of knowledge spillovers, which is zero in (IA.35) . We
assume the aggregator is homogeneous of degree one in the productivity distri-
bution.

We use a Hölder mean of the productivity of all firms producing:

A =

(
Me

M

∫ ∞

(Me
M )

1
γ
aqdF (a)

) 1
q

.

Imposing q < γ so that the integral is well-defined, we have:

A =

(
γ

γ − q

) 1
q
(
Me

M

) 1
γ

.

Our results generalize to any aggregator that is homogeneous of degree one in the
productivity distribution of producing firms. Such aggregators similarly yield an
elasticity 1/γ with respect to Me.

Firms maximize their profits, taking the wage as given:

max
ℓ

σ

σ − 1
a1−αAαℓ

σ−1
σ − wℓ.

The demand for labor is therefore

ℓ =
( w

a1−αAα

)−σ
,

and we have:

y(a) =
σ

σ − 1

(
a1−αAα

)σ
w1−σ

wℓ(a) =
(
a1−αAα

)σ
w1−σ =

σ − 1

σ
y(a)

π(a) =
1

σ − 1

(
a1−αAα

)σ
w1−σ =

1

σ
y(a).

The labor share is still (σ−1)/σ, but the micreoconomics of the firms’ interactions
differ, as can be seen from the expression for profits π(a).

The market-clearing condition for labor is:

L = w−σAασMeI1 (Me, (1− α)σ)

=

(
γ

γ − q

)ασ
q
(
Me

M

)ασ
γ

Me
γ

γ − (1− α)σ

(
Me

M

) (1−α)σ
γ

−1

w−σ

=

(
γ

γ − q

)ασ
q γ

γ − (1− α)σ
M

(
Me

M

)σ
γ

w−σ

w =

(
M

L

) 1
σ
(

γ

γ − q

)α
q
(

γ

γ − (1− α)σ

) 1
σ
(
Me

M

) 1
γ

.

We still have (σ − 1)/σC = wL, and the same elasticities: Ew = EC = EA = 1/γ.
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D.3.2 Spillovers

General formula. We now derive the total spillovers, incorporating the ad-
ditional externalities in the models above

Proposition D.1. For all the models of Section D.3, the market-based spillover
is:

spillmkt(n) = EIn
bus. stealing

+ Eπ
general eq.

+ (σ − 1)EC
I1
In

appropriability

. (IA.42)

The outcome-based spillover, which does not depend on disagreement, is:

spillout = EI1 + Eπ + (σ − 1)EC . (IA.43)

This decomposition highlights how disagreement can matter for market-based
measures of spillovers. While our theoretical exercise is not exhaustive, most
spillovers considered in the innovation literature fit in one of our three categories.

The first category is business-stealing. As discussed previously, disagreement
dampens the effect of business-stealing. Competitive interactions between firms
of different productivities can take different forms than the displacement of our
model. Nevertheless, spillovers that are more bottom-heavy tend to be dissipated
by disagreement in general.

This stands in contrast to the second category: general equilibrium effects. In
our models, these are the effects of the wage, aggregate demand, and aggregate
knowledge on firm profits. Each of these affect all firms proportionally regardless
of productivity and can be summarized by the elasticity of firm profits to firm
entry, holding productivity constant, Eπ. Because the response to these general
equilibrium forces does not interact with the productivity distribution, these
spillovers do not depend on beliefs.

Finally, there are appropriability effects accruing to workers. Because the
surplus of workers is determined in the spot market for labor, it does not depend
on the relative positions of firms. Unlike firm valuations, wage expectations
are not affected by speculation about the relative positions of firms beyond its
direct impact on entry and overall labor demand. When disagreement increases,
the market-based spillover to workers disappears. This insight is not specific
to workers. Rather, it affects all stakeholders of the innovation process that
our model abstracts from, including owners of other production inputs in scarce
supply or consumers who enjoy some of the surplus.

Labor with decreasing returns to scale. While the business-stealing
effect remains, there are two additional sources of spillovers in this model. First,
there is an appropriability effect as investors do not account for workers capturing
some of the surplus from innovation through higher wages. Second, there is an
input price effect as competition of firms for the same source of labor pushes
wages up, making labor more expensive for every other firm.

From the decomposition in equation (IA.38), we can write the market-based
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social value as:

1

σ
· d (In/I1 · C)

dMe
+

σ − 1

σ
· dC
dMe

. (IA.44)

As before, the corresponding spillover is a ratio of the direct and indirect effect
of firm entry:

1− spillmkt(n) =
Me

C
I1
In

· d (In/I1 · C)
dMe

+ (σ − 1) · Me

C
I1
In

· dC
dMe

,

which implies:

spillmkt(n) = −EIn + (σ − 1) EC − (σ − 1)EC · I1
In

. (IA.45)

When focusing on the outcome-based measure, we can just replace n with 1.
The first term captures the business-stealing effect of the model in Section 3,

which is still present in this economy with the same magnitude EIn . Hence, the
predictions for this spillover from Section 4.2 still hold. However, the presence
of workers introduces two new sources of spillovers.

The second term captures the input price effect. The functional form arises
from two facts. First, from equation (IA.36), the elasticity of profits with respect
to the wage is 1 − σ. Next, EC = Ew since the constant labor share and labor
supply implies that the wage grows as fast as aggregate output. Disagreement
does not impact the input price spillover because change in wage affects all firms
proportionally, irrespective of productivity. This negative externality is larger
when firms rely more on labor—high σ—or when the economy responds more to
entry—high EC .

The third term captures the appropriability effect. When new firms enter,
aggregate output increases, with constant elasticity EC = 1/γ. The production
function implies that workers receive a constant fraction of aggregate output
given by the labor share (σ − 1)/σ. Therefore, the social value of entry for
workers is σ−1

σ ECC/Me. Importantly, this quantity does not depend directly on
the amount of disagreement: all firms offer the same wage in equilibrium, so
beliefs are irrelevant for workers. However, the market-based private value of
the firm does. This value is In/I1 × σ−1C/M : the relative expected output of
a favorite firm to an average firm multiplied by average profits of firms. The
appropriability effect is a positive spillover, larger when workers capture more
of total surplus—high σ—or when entry has a stronger impact on output—
high EC . Disagreement does not affect the outcome-based spillover. In contrast,
the market-based spillover decreases in n, disappearing altogether in the limit
when n → ∞. This is because the bubble inflates the market value of firms,
but workers’ acknowledge that their earnings are determined by the average
producing firm and realize that not all firms will be winners.5

The asymptotics for the business-stealing effect are similar to that of the

5In the case of agreement, n = 1, the appropriability and input price spillovers exactly cancel out. It
is a situation where pecuniary externalities cancel out even though the first welfare theorem does not hold
because of business-stealing.
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model of Section 3.

Lemma D.9 (Asymptotics for business-stealing effect). In the high-disagreement
limit (n → ∞), the business-stealing effect converges to a limit that depends on
the marginal cost of firm creation θ:

• If θγ < 1, then limn→∞ EIn = EI1 = σ
γ − 1.

• If θγ > 1, then limn→∞ EIn = 0.

• If θγ = 1, then limn→∞ EIn = α∞e−α∞/fe.

Proof. The free-entry condition equation (IA.39) leads to:

(σ − 1)

(
γ − σ

γ
L

) 1−σ
σ

· fe = M
θ+σ−γ

γ
σ−1
σ ·M

1−σ
γ

−θ
e · In.

We recast the free-entry condition using a to be able to use the asymptotic results
from Lemma C.2

constant = a1−σ−γθ

∫ ∞

a
xσdFn(x).

Writing θ̃ = θ+(σ−1)/γ and η̃ = σ, we recognize the expression from Lemma C.2
and use Proposition C.1.

For the labor surplus term, we study the behavior of I1/In.

Lemma D.10 (Asymptotics for labor surplus distortion). In the high-
disagreement limit (n → ∞), the labor surplus distortion disappears:

lim
n→∞

(σ − 1)EC
I1
In

= 0

Proof. Since θ̃ > 0, Lemma C.1 gives limn→∞Me = ∞. The proof of Lemma C.1
implies limn→∞ In = ∞. Finally, because σ < γ,

I1 =
γ

γ − σ

(
Me

M

)σ−γ
γ

→ 0

as n → ∞. Therefore, I1/In converges to 0.

Demand externalities. At the aggregate level, the economy behaves simi-
larly to the previous model.6 However, the microeconomics of firms’ interactions
is different and so are profits:

π(a) =
1

σ
·
(

σ

σ − 1

)1−σ

w1−σ · C · aσ−1. (IA.46)

6The profit share is 1/σ, the aggregate production function is homogeneous of degree one in the dis-
tribution of productivities, and the relative labor allocations are efficient. This result was first shown in
Lerner (1934). It is the consequence of the homogeneous distortions at the firm level when markups are
constant. The macroeconomic elasticities of aggregate consumption and wages to firm entry are therefore
EC = Ew = 1/γ.
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The elasticity of profits to individual firm productivity is σ − 1 instead of σ. In
addition, profits are now increasing in aggregate demand C because of imperfect
substitution across goods.

This role of aggregate demand gives rise to an additional source of spillovers:
a demand externality as in Blanchard and Kiyotaki (1987). Similar to the role
of the wage, aggregate demand affects all firms proportionally. Therefore the
demand spillover is the product of the elasticity of aggregate output to entry C
and the elasticity of profits to aggregate output:

Demand Spillover = EC . (IA.47)

Demand spillovers do not depend on disagreement and are identical whether
measured using outcomes or market value.

Knowledge spillovers. Like the previous two cases, the impact of knowledge
on profits is the same irrespective of each individual firm’s productivity. The
knowledge spillover is therefore the product of the elasticity of profit to knowledge
ασ, and the elasticity of knowledge to entry 1/γ7

Knowledge Spillover = α(σ − 1)EC . (IA.48)

This expression does not depend on disagreement and is identical for market-
based and outcome-based measures.

D.3.3 Three Illustrations of the Role of Disagreement

We draw three implications from Proposition D.1 that illustrate that disagree-
ment fundamentally alters how to measure and interpret the value of innovation.

Macroeconomic versus Microeconomic Elasticities. Without dis-
agreement, market-based and outcome-based measures of spillovers coincide be-
cause valuations are expected outcomes. In the economies we have considered,
the result is even stronger. The spillover under agreement is the same across
all specifications: with labor only, with aggregate demand, and with aggregate
knowledge:

spillout = spillmkt(1) = σEC − 1. (IA.49)

While we can derive this expression from equation (IA.43) separately for each
model, a simple macroeconomic argument justifies the result. The total effect
of entry is the response of aggregate output to entry dC/dMe. Ex ante, each
firm contributes an equal fraction to total output, and the value of a firm is
output times the profit share 1/σ. Hence, the value of a firm is C/(Meσ), and
the spillover is given immediately by equation (IA.49).

Regardless of the nature of firm interactions, only two macroeconomic quanti-
ties are needed to evaluate the total spillover—the capital share and the elasticity

7Because both knowledge and output are determined by the distribution of firm productivity, they grow
at the same pace with entry EA = EC .
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of aggregate output to firm entry. In particular, all our specifications lead to the
same values of these two quantities. Disagreement breaks this result. Because
different spillovers respond differently to disagreement, the aggregate reasoning
under agreement no longer works.

One particularly telling example is the limit of large n when the market-
based spillover converges to the profit elasticity Eπ. This spillover measure is
a microeconomic elasticity. It is the response of the profits of one specific firm
(i.e., of given productivity) to overall entry. This implies that one needs firm-
level data rather than aggregate data to estimate spillovers. Moreover, across
our three model specifications, while the outcome-based spillover is identical, the
market-based spillover for large disagreement takes different values:

spillmkt(n → ∞) = −σ − 1

γ
with labor only, (IA.50)

spillmkt(n → ∞) = −σ − 2

γ
with aggregate demand, (IA.51)

spillmkt(n → ∞) = −(1− α)σ − 1

γ
with aggregate knowledge. (IA.52)

In other words, the nature of microeconomic interactions matters for market-
based spillovers in the presence of disagreement.

Reversal of Comparative Statics. Key properties of the economy often
have an opposite impact on the total spillover, depending on whether it is mea-
sured using outcomes or market values. The following proposition highlights one
such reversal, for a parameter common to all of our specification, σ.

Proposition D.2. For all models, the outcome-based spillover is increasing in
the labor share. Conversely, with high disagreement (n → ∞ and θ > 1/γ), the
market-based spillover is decreasing in the labor share.

The outcome-based spillover is given by equation (IA.49). An economy with
a larger labor share mechanically has a lower capital share. Thus, the importance
of social value relative to the value of one firm is larger. For the market-based
spillover, the focus is on the elasticity of individual firm profits to entry. A
higher labor share implies higher reliance on labor and therefore stronger negative
spillovers through the wage effect. In the model with labor, comparative statics
with respect to the thickness of the tail of the productivity distribution γ are
also reversed. Figure IA.2 illustrates these results.

Reversal of Sign of the Spillover. We also identify situations where the
sign of the total spillover is reversed, where firm entry brings positive externali-
ties according to market-based measures but negative externalities according to
outcome-based measures or vice-versa.

Proposition D.3. With demand externalities or knowledge spillovers, if the
labor share is close to zero, the outcome-based spillover is positive and the market-
based spillover is negative with large disagreement. The converse happens when
the labor share is close to its upper bound.
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Figure IA.2
Market-based and outcome-based spillovers.

The figure reports the outcome-based (black lines) and market-based spillovers (red lines) as a function of
the labor share for the model with labor only. Solid lines correspond to a larger value of γ than dotted lines.

Proof. In both models, the aggregate consumption elasticity is unchanged, the
output-based spillover (and market-based spillover under agreement) is un-
changed: spillout = −(γ − σ)/γ.

In the demand externalities model with speculation, the free-entry condition
is: (

Me

M

)θ

=
1

σ
C
(
C
L

)1−σ

In,

which we can rewrite as:

KMθ−(1−(σ−1))/γ
e = In,

where K does not depend on Me and n. This is again the same condition as
the homogeneous goods model, with σ replaced by σ − 1. The condition for the
convergence of EIn from Lemma D.9 still applies as well. In the high-disagreement
limit with θ > 1/γ, the market-based spillover becomes:

spillmkt(n → ∞) = −1− EI1 + EC = −σ − 2

γ
. (IA.53)

In the knowledge spillover model, Proposition D.1 and Lemma D.9 still apply,
with I1 and In evaluated with parameter (1− α)σ. The market-based spillover
in the high-disagreement limit with θ > 1/γ becomes:

spillmkt(n → ∞) = −1− EI1 + EC = −(1− α)σ − 1

γ
. (IA.54)
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Figure IA.3
Market-based and outcome-based spillovers.

The upper and lower panels of Figure IA.3 shows the sign reversal of the
market-based spillover for the model with demand externalities and knowledge
spillovers, respectively. When the labor share is low, the labor surplus is relatively
small, and the dominant force for the wedge is that firms do not internalize the
aggregate decreasing returns to scale of the economy, leading to negative real
spillovers. With disagreement however, since firms do not rely much on labor, the
general equilibrium effect is small. Hence, the demand or knowledge externality
dominates, leading to positive value spillovers. The sign reversal across measures
of spillovers is not a knife-edge case. Reversals happen throughout the entire
range of the labor share whenever γ = 2 with demand externalities or α = 1−1/γ
with knowledge spillovers. The proposition also shows that the sign reversal can
happen in both directions: a positive spillover becoming negative or a negative
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spillover becoming positive.

D.4 Variable Number of Participating Firms

D.4.1 Setting and Equilibrium

We study a model where the number of participating firms, M , responds to
firm creation Me, which can be interpreted as households’ consumption bundles
becoming more or less concentrated as more firms enter the economy. We assume
that M varies exogenously with the level of firm entry Me:

M =
1

Mχ−1
0

·Mχ
e ,

where χ is the elasticity of firms producing to firms created and M0 a normal-
ization constant. We assume that χ ≤ 1 such that we always have M ≤ Me.

The cost of creating a firm only depends on M0 through:

W ′(Me) = fe

(
Me

M0

)θ

.

The productivity threshold to produce is now:

a := F−1

(
1− M

Me

)
=

(
Me

M0

) 1−χ
γ

.

The model still features a constant labor share and firm profits are still isoelastic
in the productivity:

π(a) =
1

σ − 1
· w1−σ · aσ =

1

σ

C
Me

· a
σ

I1
,

where we have redefined the integrals I1 and In to adjust for the new expressions
for the productivity threshold a:

In(χ) =
∫ ∞(

Me
M0

) 1−χ
γ

aσdFn(a)

I1(χ) =
γ

γ − σ
·
(
Me

M0

)(χ−1) γ−σ
γ

.

The market-clearing condition L = Mew
−σI1 implies the equilibrium wage:

w =

(
γ

γ − σ

) 1
σ

· L− 1
σM

(1−χ)
(

1
σ
− 1

γ

)
0 ·M

χ
σ
+ 1−χ

γ
e ,

so that the labor elasticity is :

Ew =
1

γ
+ χ ·

(
1

σ
− 1

γ

)
.
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We obtain aggregate consumption by aggregating individual output C =
Meσ/(σ − 1)w1−σI1, which yields equilibrium aggregate consumption and elas-
ticity:

C =
σ

σ − 1

γ

γ − σ
· L

σ−1
σ ·M

(1−χ)
(

1−σ
σ

+ γ−1
γ

)
0 ·M

1
γ
+χ·

(
1
σ
− 1

γ

)
e

EC = Ew =
1

γ
+ χ ·

(
1

σ
− 1

γ

)
D.4.2 Spillovers

Given the constant labor share and isoelastic profits, we can apply Proposi-
tion D.1 and obtain the market-based spillover:

spillmkt(n) = EIn(χ) − 1− EI1(χ) − EC + (σ − 1)EC · I1(χ)
In(χ)

. (IA.55)

From the expression for In we have the following change in the elasticities:

EIn(χ) = (1− χ)EIn(χ=0) = (1− χ)EIn (IA.56)

Asymptotics. We now turn to the high-disagreement limit. The first-order
condition for firm creation is:

fe

(
Me

M0

)θ

=
1

σ − 1
w1−σIn(χ)

⇐⇒ constant = a
−θ γ

1−χ
+(1−σ) γ

1−χ

(
1
γ
+χ

(
1
σ
− 1

γ

)) ∫ ∞

a
aσdFn(a).

We define:

θ̃ =
1

1− χ

(
θ +

σ − 1

γ
+ χ(σ − 1)

(
1

σ
− 1

γ

))
,

and recognize the entry condition of the baseline model. We apply our previous
results, changing the condition for EIn(χ) → 0 to γθ̃ > σ, which reduces to:

γ(θ + χ) > 1 + χ
(γ
σ
− 1
)
. (IA.57)

If this condition is satisfied, then limn→∞ EIn(χ) = 0. When the inequality is
reversed, limn→∞ EIn(χ) = EI1(χ) = (1−χ)(σ−γ)/γ. With equality, the elasticity
admits a finite limit between these two values.

Behavior of the spillovers. The outcome-based spillover is

spillout = −1 + σEC = −γ − σ

γ
+ χσ

(
1

σ
+

1

γ

)
. (IA.58)
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The market-based spillover with high disagreement, when θ is large enough, is:

spillmkt(n → ∞) = −1− EI1(χ) + EC = −σ − 1

γ
− χ (σ − 1)

(
1

σ
− 1

γ

)
(IA.59)

As long as |χ| < 1, we obtain similar results as without a variable number of
participating firms. A higher elasticity of firm participation with respect to
firm entry leads to opposite results with and without disagreement. A large
elasticity χ dampens the outcome-based spillovers because it diminishes business
stealing. However it strengthens the market-based spillover with disagreement:
in response to firm entry, labor demand responds at the intensive margin with
more productive firms and at the extensive margin with more participating firms.

D.5 Participation Costs

Another way to ensure the marginal firm makes zero profit is to assume firms
invest in infrastructure to produce. In particular, suppose that upon entry all
firms can participate on the goods market, but firms must buy one unit of in-
frastructure to reach all of their customers. Households produce infrastructure
competitively at a cost of effort Φ. In an equilibrium with M producing firms,
the price of infrastructure is:

Φ′(M) = φ(M) = φ0 ·Mν

with ν > 0, so that the cost of infrastructure is increasing in the mass of pro-
ducing firms M .

D.5.1 Participation Costs in the Baseline Model

Model. GivenMe andM , profits before the infrastructure costs are unchanged
from the standard model in Section D.3 with decreasing returns to scale:

π(a) =
1

σ − 1
· w1−σ · aσ.

The equilibrium wage is also unchanged:

w =

(
γ

γ − σ

) 1
σ

·
(
Me

L

) 1
σ

·
(
Me

M

) 1
γ
− 1

σ

.

The marginal firm has productivity a and spends all of its profit on infrastructure.
Therefore, we have the zero-cutoff-profit condition Φ′(M) = π(a), which implies:

M
ν+ 1

γ
+σ−1

σ =
1

φ0

1

σ − 1

(
γ − σ

γ

)σ−1
σ

L
σ−1
σ ·M

1
γ
e ,

where we use the fact that a = (Me/M)1/γ . In Section D.4, we specified an
exogenous set of producing firms M = Mχ

e /M
χ−1
0 . This arises endogenously
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through our cost of infrastructure with

χ =
1

γ

(
ν +

1

γ
+

σ − 1

σ

)−1

M1−χ
0 =

(
1

φ0

1

σ − 1

(
γ − σ

γ

)σ−1
σ

L
σ−1
σ

)(
ν+ 1

γ
+σ−1

σ

)−1

,

where the exponent satisfies χ ≤ 1.
We can also compute the elasticity EC :

EC =
1

γ
+ χ

(
1

σ
− 1

γ

)
=

1

γ
· 1 + ν

1 + ν + 1/γ − 1/σ
= χ · (1 + ν).

The equilibrium condition in the competitive equilibrium is:

W ′(Me) =
1

σ
· C
Me

· Ĩn
I1

,

where we define the modified Ĩn integral to account for the infrastructure expen-
ditures of the firm:

Ĩn(Me, χ) =

∫ ∞(
Me
M0

) 1−χ
γ

(
aσ −

(
Me

M0

)σ 1−χ
γ

)
dFn(a).

With n = 1, we have:

Ĩ1(Me, χ) =
σ

γ − σ
·
(
M0

Me

)(1−χ) γ−σ
γ

=
σ

γ
· I1(Me, χ).

Aggregate profits therefore represent a fraction σ/γ of aggregate revenue after
labor costs, while aggregate infrastructure costs account for the other (γ−σ)/γ.
Therefore, aggregate profits represent a share 1/γ of consumption and aggregate
infrastructure costs 1/σ − 1/γ.

Spillovers. The market-based social value is now characterized by:

d

dMe

[
1

σ
C Ĩn
I1

+
σ − 1

σ
C +

(
1

σ
− 1

γ

)
C

consumption from
infrastructure

− Φ(M)

cost of
infrastructure

]

=
1

σ
C Ĩn
I1

Ĩ ′
n

Ĩn
+

1

σ
C′ Ĩn
I1

− 1

σ
C Ĩn
I1

I ′
1

I1
+

σ − 1

σ
C′ +

(
1

σ
− 1

γ

)
C′ − Φ′(M)M(

1
σ
− 1

γ

)
C

· 1
M

dM

dMe
.
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The market-based spillover is therefore:

spillmkt(n) = EĨn − EI1 − 1 + EC + (σ − 1)EC · I1
Ĩn

+
γ − σ

γ
(EC − EM ) · I1

Ĩn
surplus from

infrastructure costs

,

where the last term accounts for the surplus from infrastructure creation.
The outcome-based spillover (and market-based spillover under agreement)

is:

spillout = −1 + EC +

[
(σ − 1)EC +

(
1− σ

γ

)
(EC − χ)

]
γ

σ
.

Using the values of EC and χ, we obtain:

spillout = −1 + χγ

(
1 + ν − 1

σ
+

1

γ

)
= 0, (IA.60)

given the formula above for χ. Participation is now a good traded on a competi-
tive market. Hence the first welfare theorem applies, and there are no outcome-
based spillovers.

Now we apply a similar reasoning as earlier to find the condition for conver-
gence when θ is large. The condition for convergence of EĨn is the same as for
EIn :

γ(θ + χ) > 1 + χ
(γ
σ
− 1
)

(IA.61)

⇐⇒ γθ > 1 +
1

ν + 1
γ + σ−1

σ

(
1

σ
− 1

γ
− 1

)
. (IA.62)

As n → ∞, we have that Ĩn → ∞ and I1 → 0, and therefore, I1/Ĩn → 0.
For the high-disagreement market-based spillover we have

spillmkt(n → ∞) = −(σ − 1) · Ew = −σ − 1

γ
− (σ − 1)χ

(
1

σ
− 1

γ

)
(IA.63)

= −σ − 1

γ
·
(

1 + ν

1 + ν + 1/γ − 1/σ

)
. (IA.64)

We find that |spillmkt(n → ∞)| is decreasing in ν since 1/γ < 1/σ. As the cost
of producing infrastructure becomes steeper, the sensitivity of firm participation
to firm creation is smaller, and the market-based spillover is less responsive. In
the limit with ν → ∞, a fixed number of firms produces, and we are back to our
baseline spillmkt(n → ∞) = −(σ−1)/γ. Finally, |spillmkt(n → ∞)| is increasing
in σ.

D.5.2 Melitz (2003) Model: Participation Costs and Dixit-
Stiglitz

We now introduce Dixit-Stiglitz preferences to the above model, as in Melitz
(2003).
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Model. GivenMe andM , profits before the infrastructure costs are unchanged
from the standard model with decreasing returns to scale:

π(a) =
1

σ

(
σ

σ − 1

)1−σ

· C · w1−σ · aσ−1.

The equilibrium consumption is also unchanged:

C
L

=

(
γ

γ − (σ − 1)

) 1
σ−1

M
1

σ−1
− 1

γM
1
γ
e .

The marginal firm has productivity a and spends all of its profit on infrastructure.
Therefore, we have the zero-cutoff-profit condition Φ′(M) = π(a), which implies

M
ν+ 1

γ
+σ−2

σ−1 =
1

φ0

1

σ

(
γ − (σ − 1)

γ

)σ−2
σ−1

L ·M
1
γ
e ,

where we use the fact that a = (Me/M)1/γ . In Section D.4, we specified an
exogenous set of producing firms M = Mχ

e /M
χ−1
0 . This arises endogenously

through our cost of infrastructure with

χ =
1

γ

(
ν +

1

γ
+

σ − 2

σ − 1

)−1

,

M1−χ
0 =

(
1

φ0

1

σ

(
γ − (σ − 1)

γ

)σ−2
σ−1

L

)(
ν+ 1

γ
+σ−2

σ−1

)−1

,

where the exponent satisfies χ ≤ 1 if and only if ν+ σ−2
σ−1 ∈ (−∞,−1/γ)∪ [0,∞).

Otherwise, all firms participate as Me grows to infinity.
Finally, we derive the elasticity EC :

EC =
1

γ
+ χ

(
1

σ − 1
− 1

γ

)
=

1

γ
· 1 + ν

1 + ν + 1/γ − 1/(σ − 1)
= χ · (1 + ν).

The equilibrium condition in the competitive equilibrium is:

W ′(Me) =
1

σ
· C
Me

· Ĩn
I1

.

Aggregate profits represent a fraction (σ− 1)/γ of aggregate revenue after labor
costs, and aggregate infrastructure costs account for the other (γ − (σ − 1))/γ.
Therefore, aggregate profits represent a share (σ − 1)/(σγ) of consumption and
aggregate infrastructure costs (γ − (σ − 1))/(σγ).
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Spillovers. The market-based social value is:

d

dMe

[
1

σ
C Ĩn
I1

+
σ − 1

σ
C +

(
γ − (σ − 1)

σγ

)
C − Φ(M)

]
=

1

σ
C Ĩn
I1

Ĩ ′
n

Ĩn
+

1

σ
C′ Ĩn
I1

− 1

σ
C Ĩn
I1

I ′
1

I1
+

σ − 1

σ
C′ +

(
γ − (σ − 1)

σγ

)
C′ − Φ′(M)M

1

M

dM

dMe
.

The market-based spillover is therefore:

spillmkt(n) = EĨn − EI1 − 1 + EC +

[
(σ − 1)EC +

(
1− σ − 1

γ

)
(EC − χ)

]
I1
Ĩn

.

(IA.65)

The outcome-based spillover (and market-based spillover under agreement) is:

spillout = −1 + EC +

[
(σ − 1)EC +

(
1− σ − 1

γ

)
(EC − χ)

]
γ

σ − 1
(IA.66)

=
1

σ − 1
· 1 + ν

1 + ν + 1/γ − 1/(σ − 1)
. (IA.67)

We apply the reasoning again to find the condition for convergence when θ
is large. The condition for convergence of EĨn is the same as for EIn :

γ(θ + χ) > 1 + χ

(
γ

σ − 1
− 1

)
(IA.68)

⇐⇒ γθ > 1 +
1

ν + 1
γ + σ−2

σ−1

(
1

σ − 1
− 1

γ
− 1

)
. (IA.69)

As n → ∞, we have Ĩn → ∞ and I1 → 0, and therefore I1/Ĩn → 0.
For the high-disagreement market-based spillover we have

spillmkt(n → ∞) = −(σ − 1) · Ew + EC = −σ − 2

γ
·
(

1 + ν

1 + ν + 1/γ − 1/(σ − 1)

)
.

(IA.70)

When ν → ∞, there is a fixed supply of infrastructure and thus a fixed number
of firms, which implies:

spillout =
1

σ − 1
,

spillmkt(n → ∞) = −σ − 2

γ
.

33



E Additional Empirical Results

Table IA.1
Summary Statistics

N Mean Std. Dev. 25th pct. Median 75th pct.

Bubble
Bubble Periods Dummy 2,734 0.0271 0.162 0 0 0

Value of Innovation (KPSS)
Patent Level Value
Stock Market ($ Mn) 1,171,806 14 37.8 2.32 5.46 12.7
Citations (fwd. looking) 1,171,806 12 22.6 2 5 13

Firm Level Value
Stock Market ($ Mn) 47,887 232 1880 0.519 3.06 24.5
Citations (fwd. looking) 47,887 52.9 236 2.88 7.8 26.7

Firm Level Statistics
Mkt. Cap. ($ Mn) 47,887 2854 14667 47.2 200 949
Segments (# naics-4) 53,066 1.33 0.646 1 1 2
Segments (# naics-6) 53,066 1.41 0.729 1 1 2

Measuring Spillovers (BSvR)
Firm Outcomes (real or market valued)
Sales ($ Mn) 9,382 3563 12626 135 509 2037
Tobin’s q 9,382 2.46 3.09 0.86 1.49 2.71

Measures of Spillovers (Jaffe)
Technology 9,382 9.8 1.02 9.34 9.97 10.5
Competition 9,382 7.32 2.35 6.33 7.64 9.01

Measures of Spillover (Mahalonobis)
Technology 9,382 11.4 0.821 10.9 11.5 11.9
Competition 9,382 8.53 1.73 7.87 8.77 9.74

Note: Table IA.1 presents summary statistics of the main variables in the regression specifications. The bubble dummy
corresponds to bubble detected across the Fama-French 49 industries, according to the methodology outlined in Greenwood,
Shleifer, and You (2018). The value of innovation both at the firm and patent level is directly taken from Kogan et al.
(2017). The stock market value of innovation at the patent level corresponds to the appreciation in the value of a firm issuing
a patent around the patent-issuance date. The stock market value of innovation at the firm level corresponds to an annual
aggregation of the total value of all patents issued by a firm in a given year. Both the patent- and firm-level citation value
of a patent corresponds to its forward-looking number of citations (until the end of the sample in 2010). Other firm-level
statistics correspond to the CRSP-Compustat merged file (for market capitalization, sales, and Tobin’s q) and Compustat
segments file. Tobin’s q is measured from Bloom, Schankerman, and Van Reenen (2013) as the market value of equity
plus debt divided by the stock of fixed capital. We use measures of technological and competition spillovers from Bloom,
Schankerman, and Van Reenen (2013), corresponding to the distance between the technological class of patents issued by a
firm with other public firms and to the distance between the set of product market of a firm and other public competitors.
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Table IA.2
Number of Patents in Times of Bubbles

Patents (#) Log Patents (#)

(1) (2) (3) (4) (5)

Bubble 1.385∗∗ 0.148∗∗∗ 0.154∗∗ 0.169∗∗∗ 0.178∗∗

(0.578) (0.056) (0.066) (0.063) (0.075)

Lagged Patents (#) 0.982∗∗∗

(0.026)
Lagged Log Patents (#) 0.824∗∗∗ 0.795∗∗∗ 0.827∗∗∗ 0.799∗∗∗

(0.008) (0.008) (0.007) (0.008)

Fixed Effects C – C Y C, Y

Observations 106,176 106,278 106,176 106,278 106,176
R2 0.91 0.67 0.68 0.68 0.68

Note: Table IA.2 presents panel regressions of the quantity of innovation, measured by the number of patents issued at the
USPTO three-digit class level, on a dummy from Greenwood, Shleifer, and You (2018) that captures whether the firm is in
an industry that is in a bubble or not. We control for the lagged number of patents for column one and lagged logarithm
for columns two to five. Depending on the specification, we include fixed effects for the patent class level C and patent
grant-year Y . Standard errors clustered at the year level are in parentheses. *, **, and *** denote significance at the 10%,
5%, and 1% levels, respectively.
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Table IA.3
Market Value of Patents Controlling for Volatility

Panel A. Firm Volatility Controls

Patent Level Firm Level

(1) (2) (3) (4) (5) (6)

Bubble Dummy 0.332∗∗∗ 0.330∗∗∗ 0.201∗ 0.521∗∗∗ 0.428∗∗∗ 0.266∗∗

(0.090) (0.090) (0.120) (0.116) (0.122) (0.133)

Log Citations 0.018∗∗∗ 0.015∗∗∗ 0.822∗∗∗ 0.820∗∗∗

(forward looking) (0.004) (0.005) (0.011) (0.011)

Log Citations x bubble 0.055∗∗ 0.061∗∗∗

(0.025) (0.012)

Firm-level Volatility −0.312 −0.351 −0.341 −2.468∗∗ −0.706 −0.699
(0.798) (0.794) (0.798) (1.125) (1.026) (1.029)

Fixed Effects Y, F Y, F Y, F Y, F Y, F Y, F

Observations 1,016,214 1,016,214 1,016,214 47,876 47,876 47,876
R2 0.67 0.67 0.67 0.89 0.94 0.94

Panel B. Industry Volatility Controls

Patent Level Firm Level

(1) (2) (3) (4) (5) (6)

Bubble Dummy 0.288∗∗∗ 0.287∗∗∗ 0.143 0.441∗∗∗ 0.350∗∗∗ 0.201∗∗

(0.079) (0.078) (0.105) (0.064) (0.070) (0.088)

Log Citations 0.015∗∗∗ 0.012∗∗∗ 0.823∗∗∗ 0.821∗∗∗

(forward looking) (0.004) (0.004) (0.010) (0.010)

Log Citations x bubble 0.061∗∗∗ 0.057∗∗∗

(0.018) (0.013)

Industry-level Volatility 29.601∗∗∗ 29.501∗∗∗ 29.581∗∗∗ 24.488∗∗∗ 25.744∗∗∗ 25.651∗∗∗

(7.405) (7.392) (7.426) (6.307) (4.990) (4.967)

Fixed Effects Y, F Y, F Y, F Y, F Y, F Y, F

Observations 1,089,416 1,089,416 1,089,416 47,886 47,886 47,886
R2 0.69 0.69 0.69 0.89 0.94 0.94

Note: Table IA.3 presents panel regressions of the value of innovation, as measured in Kogan et al. (2017) at the patent and
firm levels, on a dummy from Greenwood, Shleifer, and You (2018) that captures whether the firm is in an industry that is
in a bubble or not. We control for firm-level volatility in panel A and for industry-level volatility in panel B (measured using
daily returns on an annual basis). We include fixed effects for firm F and patent grant year Y . Standard errors clustered at
the year level are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table IA.4
Sales, and Productivity at Different Horizons During Bubbles

Horizon (years)

1 2 3 4 5

Future Sales

Citations 0.004 0.012∗∗∗ 0.017∗∗∗ 0.023∗∗∗ 0.028∗∗∗

(0.003) (0.004) (0.005) (0.006) (0.007)

Bubble 0.022 −0.026 −0.040 −0.047 −0.059
(0.034) (0.046) (0.050) (0.050) (0.049)

Citations x Bubble −0.003 0.004 −0.003 0.008 0.004
(0.016) (0.018) (0.019) (0.020) (0.023)

Fixed Effects Y, I Y, I Y, I Y, I Y, I

Observations 120,948 109,365 99,076 89,932 81,695

R2 0.10 0.10 0.11 0.12 0.13

Future TFPR

Citations 0.007∗∗∗ 0.007∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.010∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.003)

Bubble 0.026∗∗ 0.019 0.012 0.001 −0.006
(0.010) (0.012) (0.012) (0.015) (0.018)

Citations x Bubble 0.010 −0.005 −0.017 −0.001 −0.031
(0.015) (0.013) (0.017) (0.017) (0.023)

Fixed Effects Y, I Y, I Y, I Y, I Y, I

Observations 80,912 72,898 65,890 59,692 54,146

R2 0.20 0.24 0.26 0.28 0.29

Note: Table IA.4 presents panel regressions of future sales and productivity (TFPR) for horizons of one to five years on a
bubble dummy and a citation measure of patent value as in Kogan et al. (2017). We use industry (I) and year (Y) fixed
effects. Standard errors clustered at the firm-year level are presented in parentheses. *, **, and *** denote significance at
the 10%, 5%, and 1
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Table IA.5
Competitive Spillovers During Bubbles: Unnormalized Measures of Spillovers

Market-based Spillovers Outcome-based Spillovers

Jaffe Mahalanobis IV Jaffe Jaffe Mahalanobis IV Jaffe
(1) (2) (3) (4) (5) (6)

Bubble x Spill-SIC 0.146∗∗∗ 0.211∗∗∗ 0.172∗∗∗ 0.004 0.003 0.004∗∗∗

(0.028) (0.036) (0.038) (0.009) (0.014) (0.001)

Spill-SIC −0.086∗∗∗ −0.223∗∗∗ −0.335∗∗∗ −0.023∗∗∗ −0.015 −0.046
(0.018) (0.044) (0.101) (0.005) (0.015) (0.044)

Spill-Tech 0.267∗∗ 0.854∗∗∗ 1.063∗∗∗ 0.121∗∗∗ 0.159∗∗∗ 0.157∗∗

(0.114) (0.148) (0.148) (0.022) (0.040) (0.063)

Fixed Effects Y, F Y, F Y, F Y, F Y, F Y, F

Observations 8,910 8,946 8,910 8,789 8,825 8,789
R2 0.74 0.74 0.73 0.99 0.99 0.99

Note: Table IA.5 presents panel regressions of firm value (log of sales or Tobin’s q) on a measure of competition from
Bloom, Schankerman, and Van Reenen (2013) interacted with a bubble dummy, measured as in Greenwood, Shleifer, and
You (2018) that captures whether the firm is an industry that is in a bubble state or not. We control for the technological
spillover measure that corresponds to the public firms that issue patent in similar technological space. We use a measure of
spillovers based on the unnormalized Jaffe Covariance/Exposure Distance Metrics (see Table 8 of Bloom, Schankerman, and
Van Reenen (2013)). We follow the specification from Table of 3 and 5 of Bloom, Schankerman, and Van Reenen (2013) and
include the same controls. We use firm F and year Y fixed effects. Standard errors clustered at the year level are presented
in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1%, respectively.
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Table IA.6
Ownership and Bubbles: Concentration Ratio

Panel A: Concentration ratio of portfolio in industry

(1) (2) (3) (4)

Bubble 0.037∗∗∗ 0.022∗∗∗ 0.009∗ 0.005
(0.008) (0.005) (0.005) (0.004)

Controls Yes Yes Yes Yes
Fixed Effects No Industry Date Industry, Date

Observations 1,449,114 1,449,114 1,449,114 1,449,114
R2 0.08 0.18 0.10 0.18

Panel B: Concentration ratio of portfolio by institution type

(1) (2) (3) (4)

Bubble x Banks 0.028∗ 0.020∗∗ 0.025∗∗∗ 0.020∗∗∗

(0.014) (0.010) (0.009) (0.006)
Bubble x Insurance 0.051∗∗∗ 0.042∗∗∗ 0.039∗∗∗ 0.037∗∗∗

(0.010) (0.007) (0.008) (0.005)
Bubble x Inv. Advisers 0.040∗∗∗ 0.021∗∗∗ 0.005 0.000

(0.008) (0.006) (0.005) (0.004)
Bubble x Mutual Funds 0.017∗∗∗ 0.001 −0.006 −0.013∗∗

(0.006) (0.004) (0.005) (0.005)
Bubble x Pension Funds 0.037∗∗∗ 0.028∗∗∗ 0.016∗ 0.018∗∗∗

(0.012) (0.007) (0.009) (0.005)

Controls Yes Yes Yes Yes
Fixed Effects No Industry Date Industry, Date

Observations 1,449,114 1,449,114 1,449,114 1,449,114
R2 0.11 0.20 0.12 0.21

Note: Table IA.6 presents a regression of portfolio concentration within an industry on a bubble dummy in that industry-
year. The bubble dummy corresponds to the first year where a bubble is detected across Fama-French 49 industries according
to the methodology outlined in Greenwood, Shleifer, and You (2018). Industry portfolio concentration is measured using
portfolio holdings the SEC 13F filings, where we construct the four-firm concentration ratio (CR4) of portfolio shares for a
manager for each industry. In Panel B, manager types follow Koijen and Yogo (2019) and are derived from the SEC 13F
filings. All specifications include controls for manager size, the number of stocks in a given industry, and industry volatility.
Standard errors clustered at the date (quarterly) level are in parentheses. *, **, and *** denote significance at the 10%,
5%, and 1% levels, respectively.
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Table IA.7
Ownership and Bubbles: Herfindahl Hirschman Index

Panel A: Herfindahl of portfolio in industry

(1) (2) (3) (4)

Bubble 0.022∗∗∗ 0.007∗∗ 0.007 −0.005
(0.005) (0.004) (0.004) (0.004)

Controls Yes Yes Yes Yes
Fixed Effects No Industry Date Industry, Date

Observations 1,449,114 1,449,114 1,449,114 1,449,114
R2 0.06 0.13 0.06 0.14

Panel B: Herfindahl of portfolio by institution type

(1) (2) (3) (4)

Bubble x Banks 0.020∗ 0.009 0.022∗∗∗ 0.009
(0.010) (0.008) (0.008) (0.007)

Bubble x Insurance 0.026∗∗∗ 0.016∗∗∗ 0.023∗∗∗ 0.012∗

(0.007) (0.005) (0.006) (0.006)
Bubble x Inv. Advisers 0.023∗∗∗ 0.007∗ 0.006 −0.007∗∗

(0.006) (0.004) (0.004) (0.003)
Bubble x Mutual Funds 0.009∗∗ −0.007∗∗ −0.003 −0.018∗∗∗

(0.004) (0.004) (0.004) (0.005)
Bubble x Pension Funds 0.012 0.003 0.002 −0.005

(0.008) (0.005) (0.007) (0.006)

Controls Yes Yes Yes Yes
Fixed Effects No Industry Date Industry, Date

Observations 1,449,114 1,449,114 1,449,114 1,449,114
R2 0.08 0.15 0.08 0.16

Note: Table IA.7 presents a regression of portfolio concentration within an industry on a bubble dummy in that industry-
year. The bubble dummy corresponds to the first year where a bubble is detected across Fama-French 49 industries according
to the methodology outlined in Greenwood, Shleifer, and You (2018). Industry portfolio concentration is measured using
portfolio holdings the SEC 13F filings, where we construct the Herfindahl-Hirschman index (HHI) of portfolio shares for a
manager for each industry. In Panel B, manager types follow Koijen and Yogo (2019) and are derived from the SEC 13F
filings. All specifications include controls for manager size, the number of stocks in a given industry, and industry volatility.
Standard errors clustered at the date (quarterly) level are in parentheses. *, **, and *** denote significance at the 10%,
5%, and 1% levels, respectively.
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Table IA.8
Diversity and Private Value of Innovation in Bubbles

Patent Level Firm Level

(1) (2) (3) (4) (5) (6)

Bubble x Segments −0.612∗∗∗ −0.600∗∗∗ −0.533∗∗∗ −0.473∗∗∗ −0.402∗∗∗ −0.307∗∗∗

(naics 4 digits) (0.157) (0.155) (0.148) (0.109) (0.080) (0.069)

Bubble 1.471∗∗∗ 1.441∗∗∗ 1.335∗∗∗ 1.576∗∗∗ 1.431∗∗∗ 1.180∗∗∗

(0.198) (0.192) (0.205) (0.267) (0.323) (0.288)
Segments 0.309∗∗∗ 0.305∗∗∗ 0.296∗∗∗ 0.062 0.015 0.014
(naics 4 digits) (0.097) (0.096) (0.100) (0.043) (0.045) (0.037)
Log Citations 0.047∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(forward looking) (0.010) (0.009) (0.009) (0.009)
Log Market Cap 0.154∗∗∗ 0.286∗∗∗

(lagged) (0.040) (0.046)

Fixed Effects Y, F Y, F Y, F Y, F Y, F Y, F

Observations 180,636 180,636 177,911 10,426 10,426 10,256
R2 0.72 0.72 0.72 0.88 0.93 0.94

Note: Table IA.8 presents panel regressions of the value of innovation, as measured in Kogan et al. (2017) at the patent and
firm levels, on a bubble dummy interacted with the number of industries spanned by the different segments of the parent
firm. The bubble dummy is from Greenwood, Shleifer, and You (2018) and captures whether the firm is in an industry that
is in a bubble or not. Compustat segments are measured at the four-digit NAICS code level from the Compustat segments
file. We control for the forward-looking number of citations generated by a patent (or firm) from Kogan et al. (2017),
and the lagged market capitalization of the firm. We include fixed effects for firm F and patent grant year Y . Standard
errors clustered at the firm-year level are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels,
respectively.
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Table IA.9
Diversity and Private Value of Innovation in Bubbles (NAICS 6 Digit Industries)

Patent Level Firm Level

(1) (2) (3) (4) (5) (6)

Bubble x Segments −0.562∗∗∗ −0.550∗∗∗ −0.488∗∗∗ −0.388∗∗ −0.370∗∗∗ −0.295∗∗∗

(naics 6 digits) (0.178) (0.175) (0.164) (0.155) (0.094) (0.072)

Bubble 1.456∗∗∗ 1.425∗∗∗ 1.329∗∗∗ 1.459∗∗∗ 1.389∗∗∗ 1.167∗∗∗

(0.232) (0.227) (0.235) (0.317) (0.342) (0.289)
Segments 0.122 0.122 0.112 0.010 −0.031 −0.026
(naics 6 digits) (0.096) (0.095) (0.101) (0.044) (0.048) (0.041)
Log Citations 0.049∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗

(forward looking) (0.010) (0.009) (0.009) (0.009)
Log Market Cap 0.156∗∗∗ 0.287∗∗∗

(lagged) (0.042) (0.046)

Fixed Effects Y, F Y, F Y, F Y, F Y, F Y, F

Observations 180,636 180,636 177,911 10,426 10,426 10,256
R2 0.71 0.71 0.72 0.88 0.93 0.94

Note: Table IA.9 presents panel regressions of the value of innovation, as measured in Kogan et al. (2017) at the patent and
firm levels, on a bubble dummy interacted with the number of industries spanned by the different segments of the parent
firm. The bubble dummy is from Greenwood, Shleifer, and You (2018) and captures whether the firm is in an industry that
is in a bubble or not. Compustat segments are measured at the six-digit NAICS code level from the Compustat segments
file. We control for the forward-looking number of citations generated by a patent (or firm) from Kogan et al. (2017) and
the lagged market capitalization of the firm. We also include fixed effects for firm F and patent grant year Y . Standard
errors clustered at the firm-year level are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels,
respectively.
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