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A Equilibrium Model of Financial Markets with In-

vestor Competition

We derive the implications of the model of Section 2. First, we provide formal derivations
for the effect of the rise of passive investing presented in Section 2.3. Then, we show how the
degree of strategic response shapes the relative prevalence of overpricing and underpricing.
Next, we illustrate the role of investor interactions for dynamic aspects of limits to arbitrage.
Finally, we re-evaluate the effect of a rise of passive investing under heterogeneity.

A.1 The effect of a rise in passive investing

In Section 2.3, we ask how the aggregate elasticity changes when a fraction of investors be-
comes passive. We start with an economy with homogeneous investors and assume an initial
equilibrium p = p̄. Because all investors are identical, we have Ei = Eagg. Combined with
elasticity decision equation (4), this gives E i = (1 + χ)Ei. We denote the initial equilibrium
elasticity of investors by Ei = Eagg = E0.

Assume that a fraction 1 − α of investors becomes passive such that their elasticity
becomes zero and their level of demand is unchanged. We have to determine the new
elasticity of active investors Ei. The individual decisions and equilibrium conditions are:

Ei = E i − χEagg, (IA.1)

Eagg = αEi + (1− α) · 0. (IA.2)

Solving this system gives aggregate elasticity:

Eagg =
α

1 + αχ
Ei. (IA.3)

Eagg =
α

1 + αχ
(1 + χ)E0 = αE0 +

αχ

1 + αχ
(1− α)E0. (IA.4)

The first part of the equation corresponds to the direct effect of the rise in passive investing,
and the second part represents the compensation from the strategic response of the remaining
active investors.

A.2 Asymmetry of mispricing

In this section, we show that in markets with strong strategic responses, prices are less
responsive to demand when their levels are high than when they are low. The opposite
happens for low degrees of strategic response. This distinction has important practical
implications: when strategic responses are mild, as we find in the data, we expect to observe
more situations of overpricing than underpricing, and more sensitivity to demand shocks for
overpriced assets. This prediction lines up with the evidence in Stambaugh et al. (2012)
and Stambaugh et al. (2015) across a large set of anomaly strategies.1 In particular, they
document that trading the short leg of the portfolio (overpriced stocks) is more profitable

1The anomaly strategies are portfolios sorted on characteristics that predict unconditional returns, in the
style of Fama and French (1993).
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than the long leg (underpriced stocks) in episodes of high investment sentiment (demand
shocks in our theory).2

Multiplier. First, we revisit the calculation of equation (3) in the presence of strategic
responses. We show below (Appendix A.2.1) that the price multiplier to an aggregate demand
shock becomes:

Magg =
1

Eagg
· 1

1 + χ
1+χ

Var[Ei]
Eagg (p− p̄)

, (IA.5)

where Var[Ei] is the demand-weighted cross-sectional variance of elasticity.3 For small devi-
ations of the price from its baseline (small values of p− p̄), the response of prices to a change
in demand is still determined by the aggregate elasticity Eagg. For example, at first order,
the effect of a rise in passive investing on aggregate elasticity is reflected one-to-one into the
multiplier. In “fiercely competitive markets,” the rise in passive investing does not affect the
sensitivity of prices to demand, whereas it increases it when there are no strategic responses.
We now turn to how the multiplier changes when the price deviates from its baseline p̄.

No strategic response. Without strategic responses (χ = 0), the aggregate multiplier
is Magg = E−1agg. While each of the investors’ elasticities is fixed at E i, their contribution to
aggregate elasticity depends on their relative demand. When the price is below its baseline,
the more elastic investors have a stronger response than the less elastic investors: they buy
relatively more of the asset. Thus more elastic investors represent a larger fraction of the
market; aggregate elasticity increases. For example, in response to a supply shock, the
aggregate elasticity moves in the opposite direction from the price: ∆Eagg = −Var[Ei] ∆p.
How much investors differ from each other, the variance of individual elasticities, controls
the strength of the composition effect. The market has a higher capacity to absorb demand
shocks on the downside than on the upside. Without strategic responses, overpricing is more
likely to happen than underpricing.

Strong strategic responses. Consider now the other extreme of a high degree of strate-
gic response, χ → ∞. In this case the aggregate elasticity Eagg is constant; if more elastic
investors decrease their relative share, everybody becomes more elastic and exactly com-
pensates the initial decline. However, the multiplier changes because the second term of
the product in equation (IA.5) is not constant: it is smaller than one for p > p̄ and larger
than one otherwise. What happens then? If the price is above its baseline, the increase
in individual elasticities due to the strategic response implies a decrease in demand. Be-
cause all investors become more agressive, they demand less of the asset, which prevents the
price from increasing much, leading to a smaller multiplier. The demand effect goes in the

2As such, imperfect competition is an alternative explanation to short-sell constraints (for example, Miller
(1977) or Haddad et al. (2021)) for the pervasiveness of overpricing.

3Formally this corresponds to

Var[Ei] =
∫ (

E2
i

Di

S

)
− E2

agg.
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opposite direction when the price is below its baseline. Overall this leads to an opposite
behavior of the multiplier Magg relative to no strategic response. The multiplier is larger
with underpricing than overpricing: underpricing is more likely to happen than overpricing.

A.2.1 Derivations

How do prices in the two-layer equilibrium decrease in response to an exogenous shift in the
supply of a stock, ∆S? We start by defining aggregation operators which weight investors’
outcomes by the fraction of the stock they own:

Ě [xi] =

∫
xi
Di

S
, (IA.6)

V̌ar [xi] =

∫
x2
i

Di

S
−
(∫

xi
Di

S

)2

(IA.7)

ˇCov [xi, yi] =

∫
(xi − Ě[xi])(yi − Ě[yi])

Di

S
. (IA.8)

To see the impact of the change in supply on the equilibrium we start by deriving the
change in individual demand:

∆Di = ∆edi−Ei(p−p̄) = −EiDi∆p− (p− p̄)Di∆Ei, (IA.9)

such that change in aggregate demand, which corresponds to the change in aggregate supply,
reads:

∆S = ∆D = −∆pS

∫
EiDi/S − (p− p̄)S

∫
∆EiDi/S (IA.10)

= −∆pSEagg + χ(p− p̄)S∆Eagg, (IA.11)

where in the last equation we used the individual elasticity equation Ei = E i −χEagg leading
to the uniform change in individual investors’ elasticity

∆Ei = −χ∆Eagg. (IA.12)

To estimate the change in aggregate elasticity we write:

∆Eagg =
∫

∆(EiDi/S) =

∫
∆EiDi/S − ∆S

S
Eagg +

∫
Ei∆Di/S (IA.13)

= −χ∆Eagg −
∆S

S
Eagg −∆pĚ

[
E2
i

]
+ χ(p− p̄)Eagg∆Eagg. (IA.14)

∆Eagg = − 1

1 + χ− χ(p− p̄)Eagg

(
Eagg

∆S

S
+ Ě

[
E2
i

]
∆p

)
, (IA.15)

Then we can plug the change in aggregate elasticity into the main equation expressing the
change in aggregate demand and solve for ∆p as a function of the change in supply ∆S.

∆S

S
= −Eagg∆p− χ(p− p̄)

1 + χ− χ(p− p̄)Eagg

(
Eagg

∆S

S
+ Ě

[
E2
i

]
∆p

)
(IA.16)
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After some algebra, we find the change in prices in response to an exogenous change in
supply:

∆p =
1

Eagg
· 1

1 + χ
1+χ

p−p̄
Eagg V̌ar[Ei]

∆S

S
= Magg ·

∆S

S
, (IA.17)

where we define the aggregate multiplier Magg as:

Magg =
1

Eagg
· 1

1 + χ
1+χ

p−p̄
Eagg V̌ar[Ei]

. (IA.18)

A.3 Limits to arbitrage

An important insight is that engaging in arbitrage trades (or more broadly exploiting mis-
pricing) is a risky activity and this risk limits the effectiveness of arbitrageurs (De Long
et al. (1990), Shleifer and Summers (1990), Shleifer and Vishny (1997), Brunnermeier and
Pedersen (2008)).

If an asset is underpriced (p < p̄), we expect arbitrageurs (high elasticity investors) to
take on large positions. When the mispricing worsens, the arbitrageurs suffer large losses
due to their large exposure. If they are unable to raise additional capital, they have to
liquidate some of their positions which pushes the price down even further. This feedback
creates a natural instability of arbitrage activity: shocks that worsen the mispricing hurt
the arbitrageurs and deepen the mispricing. Mitchell et al. (2002) and Mitchell and Pulvino
(2012) document this instability in action.

The degree of strategic response plays an important role in this process. Without strategic
responses, the arbitrage capacity destroyed by arbitrageurs’ losses is gone altogether. With
strategic responses, other investors become more elastic in response to the decline of the
arbitrageurs. They purchase more of the asset, thereby partially compensating the lower
positions of the arbitrageurs.

We can illustrate this mechanism in our model by considering how the price responds
to a demand shock that affects disproportionately investors with high elasticity. Below
(Appendix A.3.1), we assume that each investor’s baseline demand changes by an amount
{∆di}i and compute the equilibrium price response:

∆p = Magg ×
[
E (∆di) +

χ

1 + χ
(p− p̄) Cov(Ei,∆di)

]
, (IA.19)

where expectation and covariance represent demand-weighted moments. Without strategic
responses, χ = 0, the price response is simply the product of the aggregate multiplier Magg

with the average demand shock E(∆di). A shock that hurts disproportionately investors
with large positions (for example the asset is underpriced and these investors have a high
demand elasticity) pushes the price down. The second term captures the role of strategic
responses. When the asset is underpriced (p < p̄), and demand decreases more for high
elasticity investors (Cov(Ei,∆di) < 0), we obtain a positive response which compensates
the direct effect. A symmetric compensation occurs when the asset is overpriced (see the
derivations below). Interestingly, the stabilizing role of strategic responses is stronger the
further away prices are from their baseline.4

4Duffie (2010) and Duffie and Strulovici (2012) study how the competitive response unfolds over time.
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A.3.1 Derivations

We consider an experiment where demand across investors changes by {∆di}i. Solving for
the equilibrium response of the price and elasticity is similar to the simple case of a change in
aggregate supply. First, we consider the effect of a change in investors’ demands on aggregate
demand:

∆D = ∆

∫
edi−Ei(p−p̄) =

∫
∆diDi −

∫
Ei∆pDi −

∫
(p− p̄)∆EiDi (IA.20)

∆D

S
= Ě [∆di]− Eagg∆p+ χ(p− p̄)∆Eagg, (IA.21)

where we have used Ě[Ei] = Eagg and ∆Ei = −χ∆Eagg. To solve for the change in price as a
function of the change in investors’ demands we use the second market clearing condition of
aggregate elasticities to find ∆Eagg:

∆Eagg =
∫

∆EiDi/S +

∫
Ei∆Di/S (IA.22)

= −χ∆Eagg +
∫

Ei∆diDi/S −∆p

∫
E2
i Di/S − (p− p̄)

∫
Ei∆EiDi/S (IA.23)

= (−χ+ χ(p− p̄)Eagg)∆Eagg +
∫

Ei∆diDi/S −∆p

∫
E2
i Di/S (IA.24)

=
1

1 + χ− χ(p− p̄)Eagg
·
(
Ě [Ei∆di]− Ě

[
E2
i

]
∆p
)
. (IA.25)

We plug this expression back into the expression for the change in aggregate demand above:

∆D

S
= Ě [∆di]− Eagg∆p+

χ(p− p̄)

1 + χ− χpEagg
·
(
Ě [Ei∆di]− Ě

[
E2
i

]
∆p
)

(IA.26)

The supply is fixed such that ∆D/S = 0, which after rearranging terms gives the final
expression for the change in price:

∆p =
1

Eagg
1

1 + χ
1+χ

p−p̄
Eagg V̌ar [Ei]

(
Ě [∆di] +

χ

1 + χ
(p− p̄) ˇCov (Ei,∆di)

)
(IA.27)

We recognize the first term as the standard aggregate multiplier (obtained when we derived
the response to change in supply) and write the price response as:

∆p = Magg ·

 Ě
[
∆dj

]︸ ︷︷ ︸
average demand shock

+
χ

1 + χ
(p− p̄) ˇCov (Ei,∆di)︸ ︷︷ ︸

average elasticity composition

 . (IA.28)

A.4 The effect of a rise in passive investing under heterogeneity

In Section A.1, we show how the elasticity changes when a fraction of investors become
passive. Here, we revisit this calculation under heterogeneity in baseline elasticitity E i (see
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also Section 6.1) and degree of strategic response χi. Again, we start with an economy with
an initial equilibrium p = p̄.

Individual decisions and equilibrium conditions are:

Ei = E i − χiEagg, (IA.29)

Eagg =
∫

Ei
Di

S
. (IA.30)

Combining the two yields

Eagg =
∫

Ei
Di

S
(IA.31)

=

∫
E i

Di

S
− Eagg

∫
χi
Di

S
(IA.32)

= Ě [E i]− Ě [χi] Eagg (IA.33)

= Ě [E i]×
1

1 + Ě [χi]
. (IA.34)

Denote the set of active investors as Active, and the fraction of assets held by this group
by |Active|. Passive investors have E i = χi = 0, such that

Eagg = |Active| × Ě [E i|i ∈ Active]× 1

1 + |Active| × Ě [χi|i ∈ Active]
. (IA.35)

The aggregate elasticity is the product of the active share, the average baseline elasticity
among active investors, and an equilibrium term capturing the strategic responses of active
investors. Note that this expression looks exactly like in the case with homogeneous χ (e.g.
equation (26)), other than now the strength of strategic response is controlled by the average
χi among active investors.

Now consider the effect of a change in the active share |Active|. We assume that random
investors are switching, meaning that the set of active investors that become passive is a rep-
resentative sample of the active population, such that Ě [E i|i ∈ Active] and Ě [χi|i ∈ Active]
remain unaffected by the change. Then:

d log Eagg
d log |Active|

=
|Active|
Eagg

×

Ě [E i|i ∈ Active]− |Active|×Ě[Ei|i∈Active]×Ě[χi|i∈Active]

1+|Active|×Ě[χi|i∈Active]

1 + |Active| × Ě [χi|i ∈ Active]

 (IA.36)

= 1− |Active| × Ě [χi|i ∈ Active]

1 + |Active| × Ě [χi|i ∈ Active]
(IA.37)

=
1

1 + |Active| × Ě [χi|i ∈ Active]
. (IA.38)

The pass-through from a change in the active share mirrors equation (27). The only
difference is that the average degree of strategic response χi among active investors is what
determines the pass-through instead of the single parameter χ of the homogenous model.
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A.5 Exogenous change in the baseline elasticity

Last, we consider a change in investors’ baseline elasticity ∆E i. We start with the relative
change in aggregate demand:

∆D

S
= −(p− p̄)

∫
∆EiDi/S − Eagg∆p (IA.39)

= −(p− p̄)Ě [∆E i] + χ(p− p̄)∆Eagg − Eagg∆p (IA.40)

We use market clearing to get ∆D/S = 0:

∆p = − 1

Eagg
(
(p− p̄)Ě [∆E i]− χ(p− p̄)∆Eagg

)
. (IA.41)

The change in aggregate elasticity in the case of changes in baseline elasticities is different
than in the previous cases:

∆Eagg =
∫

∆(EiDi/S) =

∫
∆E iDi/S − χ∆Eagg +

∫
Ei∆Di/S (IA.42)

=

∫
∆E iDi/S − χ∆Eagg − (p− p̄)

∫
Ei∆EiDi/S + χ(p− p̄)Eagg∆Eagg −∆p

∫
E2
i Di/S

(IA.43)

= Ě [∆E i]− χ∆Eagg − (p− p̄)Ě [Ei∆E i] + χ(p− p̄)Eagg∆Eagg −∆pĚ
[
E2
i

]
(IA.44)

After rearranging the terms and plugging in the expression for the change in the price, we
find:(

1 + χ+ χ(p− p̄)
V̌ar[Ei]
Eagg

)
∆Eagg =

(
1 + (p− p̄)

V̌ar [Ei]
Eagg

)
Ě [∆E i]− (p− p̄) ˇCov

(
Ei,∆Ēi

)
(IA.45)

Plugging back into the change in the price we have:

∆p = −Magg
p− p̄

1 + χ

(
Ě [∆E i] + (p− p̄) ˇCov (Ei,∆E i)

)
. (IA.46)
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B Model of Information Acquisition

B.1 Setup

There is one period and one asset, and a continuum of agents indexed by i ∈ [0, 1]. Each
agent has CARA preferences with risk aversion ρi:

Ui = Ei[−e−ρiWi ], (IA.47)

and initial wealth Wi. The gross risk-free rate is 1, and the random asset payoff is f . The
asset is in noisy supply x̄+ x with x̄ an exogenous fixed parameter and x ∼ N (0, σ2

x).
Each agent has a prior that f ∼ N (µi, σ

2
i ). Following Veldkamp (2011), agents start

with a flat prior on f and receive signal µi such that the signal is distributed µi ∼ N (f, σ2
i ).

Each agent can acquire a private signal ηi ∼ N (f, σ2
i,η) at cost ci(σ

−2
i + σ−2i,η ), with ci(.)

a non-decreasing positive function. That is, obtaining more precise signals is more costly.
The signal being private implies in particular that signal realizations are uncorrelated across
agents conditional on the fundamental f .

We focus on rational expectations equilibria, and among those linear equilibria specifi-
cally. These are equilibria in which the price takes the form:

p = A+Bf + Cx. (IA.48)

An equilibrium is a set of coefficient (A,B,C), information choices σ2
i,η, demand curves

Di(p|ηi) such that:

(a) Each demand function and information choice maximizes expected utility, taking as
given the price function.

(b) The market for the asset clears: x̄+ x =
∫
Di(p|ηi)di.

To solve the model, we process in two steps: first we solve for the price given information
decisions; second, we derive equilibrium information decisions.

B.2 Solving prices given information

We are going to solve for the price function p = A+Bf +Cx. First, we solve for allocations
given the information choice and finally we use market clearing to pin down the price.

Agents form posterior beliefs on the fundamental f based on their prior µi, signal ηi, and
based on prices. The signal agents can extract from prices about f is:

s(p) =
p− A

B
= f +

C

B
x. (IA.49)

Given the three signals, we are able to derive the posterior belief about f , which will be
distributed as N (µ̂i, σ̂

2
i ) as follows:

σ̂−2i = σ−2i + σ−2iη +
B2

C2
σ−2x (IA.50)

µ̂i = σ̂2
i

(
σ−2i µi + σ−2iη ηi +

B2

C2
σ−2x s(p)

)
(IA.51)
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Asset Demand. Abstracting from the cost of acquiring information, the expected utility
function for a given asset holding qi is:

Ui(qi) = −E [exp (−ρi (fqi − pqi))] (IA.52)

= − exp

(
−ρiqi (E[f ]− p) +

ρ2i
2
q2i Var[f ]

)
. (IA.53)

The first order condition with respect to qi gives us immediately:

− ρi (E[f ]− p) + ρ2i qi Var[f ] = 0

⇐⇒ qi =
1

ρiVar[f ]
(E[f ]− p)

⇐⇒ qi =
1

ρi
σ̂−2i (µ̂i − p) (IA.54)

Market Clearing. The market clearing condition reads:∫
qidi = x̄+ x. (IA.55)

Given asset demand this translates into:∫
1

ρi
σ̂−2i (µ̂i − p) di = x̄+ x (IA.56)

The goal now is to find (A,B,C), which we identify directly from the market clearing con-
dition. First we replace the expressions for the price function and the posteriors mean and
variances in the market clearing equation:∫

1

ρi
σ̂−2i

[
f +

B

C

σ̂2
i

σ2
x

x

]
di−

∫
1

ρi
σ̂−2i [A+Bf + Cx] di = x̄+ x (IA.57)

We identify all the terms that are linear in f and find that B = 1. Next, we group the terms
that are linear in x, which yields∫

1

ρi

1

C
σ−2x di−

∫
1

ρi
σ̂−2i Cdi = 1

⇐⇒
∫

1

ρi

[
1

C
σ−2x − Cσ−2i − Cσ−2iη − 1

C
σ−2x

]
di = 1

⇐⇒ C = −
[∫

1

ρi

(
σ−2i + σ−2iη

)
di

]−1
, (IA.58)

where we used the expression of the posterior found above to substitute into the second
equation. Last, we gather the constant terms to find A:

A = −x̄

[∫
1

ρi
σ̂−2i di

]−1
. (IA.59)
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B.3 Demand elasticity

We recall the demand schedule for agent i:

qi =
1

ρi
σ̂−2i (µ̂i − p)

=
1

ρi
σ̂−2i

(
σ̂2
i

[
σ−2i µi + σ−2iη ηi + C−2σ−2x s(p)

]
− p
)

=
1

ρi

(
σ−2i µi + σ−2iη ηi + C−2σ−2x (p− A)− σ̂−2i p

)
=

1

ρi

(
σ−2i µi + σ−2iη ηi +

(
C−2σ−2x − σ̂−2i

)
p− C−2σ−2x A

)
. (IA.60)

We can read the demand elasticity off the terms proportional to the price p as:

Ei = −dqi
dp

= − 1

ρi

(
C−2σ−2x − σ̂−2i

)
=

1

ρi

(
σ−2i + σ−2iη

)
. (IA.61)

In the model, a regression of qi on p would not give us the proper elasticity. There is a
bias in the regression because p is correlated with µi and ηi. It is still possible to recover
the elasticity using an instrument; for example the supply shock x covaries with p but is
uncorrelated with µi and ηi.

We define the aggregate demand elasticity as

Eagg =
∫

Ejdj. (IA.62)

We can express the equilibrium in terms of demand elasticities. Taking (IA.61) and (IA.62)
together, we express the solution for the equilibrium

C = −
[∫

1

ρj
(σ−2j + σ−2jη )dj

]−1
= E−1agg. (IA.63)

B.4 Optimal information

Computing expected utility. Conditional on the signal and the price, expected utility
is:

Ui(qi) = −E [exp (−ρi (fqi − pqi)) |p, η] (IA.64)

= − exp

(
−ρiqi (E[f |p, η]− p) +

ρ2

2
q2i Var[f |p, η]

)
(IA.65)

= − exp

(
−1

2

(E[f |p, η]− p)2

Var[f |p, η]

)
, (IA.66)

where the last line is derived using standard properties of quadratic functions.5

5For a function f(x) = ax2 + bx, the maximum is reached for x∗ = −b/(2a) and its value is f(x∗) =
−b2/(4a).
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We can write:

E[f |p, η]− p = (E[f |p, η]− E[f |p])︸ ︷︷ ︸
z

+(E[f |p]− p) . (IA.67)

Conditional on p, z has mean 0 and its variance σ2
z can be obtained from:

f − E[f |p]︸ ︷︷ ︸
variance: (σ−2

i +σ−2
x /C2)−1

= (f − E[f |p, η])︸ ︷︷ ︸
variance: σ̂2

i

+ z︸︷︷︸
variance: σ2

z

(IA.68)

Using equation (7.32) in Veldkamp (2011), this maps to:6

F = −1

2

1

σ̂2
i

(IA.69)

G = − (E[f |p]− p)
1

σ̂2
i

(IA.70)

H = −1

2
(E[f |p]− p)2

1

σ̂2
i

(IA.71)

So expected utility conditional on the price is:

U0|p = −(1− 2σ2
zF )−1/2 exp

(
1

2
G2
(
1− 2σ2

zF
)−1

σ2
z +H

)
= −(1 +

σ2
z

σ̂2
i

)−1/2 exp

(
1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1
1

σ̂2
i

σ2
z − 1

])

= −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1(
1

σ̂2
i

σ2
z − 1− σ2

z

σ̂2
i

)

])

= −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
−1

2

(E[f |p]− p)2

σ̂i
2

[
(1 +

σ2
z

σ̂2
i

)−1
])

U0|p = −(1 +
σ2
z

σ̂2
i

)−1/2 exp

(
−1

2

(E[f |p]− p)2

σ̂i
2 + σ2

z

)
. (IA.72)

Expected utility is:

E [U0|p] = −(1 +
σ2
z

σ̂2
i

)−1/2E exp

(
−1

2

(E[f |p]− p)2

σ̂i
2 + σ2

z

)

= −

[
σ−2i + σ−2x /C2

σ−2i + σ−2iη + σ−2x /C2

]1/2
· E

[
exp

(
−1

2

(E[f |p]− p)2

(σ−2i + σ−2x /C2)−1

)]
(IA.73)

where we use (IA.68) in the second equality.

6There is a general formula for the mean of the exponential of the quadratic of a normal variable. If we
take the multivariate normal z ∼ N (0,Σ):

E [exp(z′Fz +G′z +H)] = |I − 2ΣF |−1/2 exp

(
1

2
G′(I − 2ΣF )−1ΣG+H

)
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Optimal information. To derive the optimal information choice, investors trade off utility
with the cost of acquiring information, which translates in utility terms to:

U
(c)
0 = U0 · exp

(
ρici(σ

−2
i + σ−2iη )

)
. (IA.74)

The cost function ci(·) is increasing in the signal precision and can be specific to investor i.
We obtain the first-order condition that determines the information choice:

max
σ−2
iη

− log(−U0)− ρici(σ
−2
i + σ−2iη )

⇐⇒ max
σ−2
iη

− log(−U0)− ρici(ρiEi)

⇐⇒ 1

2

1

σ−2i + σ−2iη + σ−2x /C2
= ρic

′
i(σ
−2
i + σ−2iη ).

⇐⇒ 1

2

1

ρiEi + E2
aggσ

−2
x

= ρic
′
i(ρiEi). (IA.75)

Example 1: linear cost function. We consider the case of a constant marginal cost for
any information acquired past the initial endowment: ci(x) = c1,i max

(
x− σ−2i , 0

)
. Note

that in this case not all agents acquire information since σ−2iη > 0, so the actual precision is

σ−2iη = max

(
1

2ρic1,i
− σ−2i − E2

aggσ
−2
x , 0

)
. (IA.76)

We can rewrite the choice of information as a choice of elasticity:

Ei =
1

2ρ2i c1,i︸ ︷︷ ︸
Investor characteristics

−σ−2x

ρi
E2
agg︸︷︷︸

market elasticity

(IA.77)

Example 2: linear response to aggregate elasticity. To relate to the model of Sec-
tion 2, we ask if there is a reasonable family of cost functions that exactly gives rise to
equation (4). We are looking for a cost function such that Ei = α−βEagg. Equivalently, this
corresponds to Eagg = 1

β
(α− Ei). Plugging in the first order condition, this gives:

2ρ2i c
′
i(ρiEi) =

1

Ei + σ−2
x

ρiβ2 (α− Ei)2
(IA.78)

=def c̃′i(Ei) =
1

σ−2
x

ρiβ2E2
i +

(
1− 2ασ−2

x

ρiβ2

)
Ei + α2σ−2

x

ρiβ2

(IA.79)

The denominator of the righ-hand-side is a second degree polynomial, we solve for its
roots. The discriminant is:

∆ =

(
1− 2

ασ−2x

ρiβ2

)2

− 4
σ−2x

ρiβ2

α2σ−2x

ρiβ2
(IA.80)

= 1− 4
ασ−2x

ρiβ2
(IA.81)
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Let us assume ∆ < 0. This is equivalent to ρiβ
2 < 4ασ−2x . In this case, we have, using

standard results on the primitive of the inverse of a polynomial:

c̃i(Ei) =

2 arctan

2
σ−2
x

ρiβ
2 Ei+

(
1−2ασ−2

x
ρiβ

2

)
√

4
ασ−2

x
ρiβ

2 −1


√
4ασ−2

x

ρiβ2 − 1
+K (IA.82)

The cost function is convex as long as the argument of the arctangent is negative, so:

Ei ≤ α− ρiβ
2

2σ−2x

. (IA.83)

We can see that if the right-hand-side of this condition is positive, the condition of ∆ < 0 is
automatically satisfied.

After rescaling, 2ρici(ρiEi) = c̃i(Ei), or equivalently ci(x) =
1
2ρi

c̃i(x/ρi) we have:

ci(x) =
1

ρi

1√
2αβ̃ − 1

arctan

 β̃ x
ρi
+ (1− αβ̃)√
2αβ̃ − 1

+ K̃ (IA.84)

with β̃ = 2σ−2x /(ρiβ
2), and the condition α − ρiβ

2/(2σ−x 2) ≥ 0 becomes αβ̃ ≥ 1. We can
collect these results in a proposition.

Proposition 1. For any a > 0 and b > 0 so that ab > 1, assume the information cost
follows the function:

ci(x) = 0, if x < 0,

ci(x) =
1

ρi

1√
2ab− 1

arctan

(
b x
ρi
+ (1− ab)

√
2ab− 1

)
+K, if 0 ≤ x/ρi ≤ a− b−1

ci(x) = +∞, if x/ρi ≥ a− b−1, (IA.85)

where K is such that ci(0) = 0. This cost function is increasing and convex. Then the
optimal elasticity is:

Ei = E0,i − χEagg, (IA.86)

with E0,i = a and χ =
√

(2σ−2x )/(ρib).

B.5 Flexibility in information acquisition

We turn to the role of the flexibility in the acquisition of information for the degree of
strategic response. We first take the inverse of (IA.75)

ρiEi + E2
aggσ

−2
x =

1

2ρi
· 1

c′i(ρiEi)
. (IA.87)

13



Then we use the implicit function theorem:

ρi
dEi
dEagg

+ 2Eaggσ−2x = − 1

2ρi
· ρic

′′
i

c′2i

dEi
dEagg

. (IA.88)

This yields

χ = − dEi
dEagg

= 2Eaggσ−2x · 1

ρi +
1
2

c′′i
c′2i

(IA.89)

The response depends on the curvature of the information acquisition cost function. If
the curvature is zero (as is the case in our linear cost example), then the response is highest.
A larger curvature would elicit a weaker response.

B.6 Price informativeness

We define price informativeness for investor i as the ratio of the precision of their belief
about the fundamental when they condition on their private information and on the price
and the precision of their belief using private information only:

Ii =
Var(f |µi, ηi, p)

−1

Var(f |µi, ηi)−1
=

σ−2i + σ−2iη + E2
agg σ−2x

σ−2i + σ−2iη

(IA.90)

= 1 + Eagg
Eagg
ρiEi

σ−2x

We also define the absolute price informativeness of the price as

Iabs = Var(f |p)−1 = E2
aggσ

−2
x . (IA.91)
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C Other Foundations for the Degree of Strategic Re-

sponse χ

C.1 Alternative theories

We discuss other theories of what determines the strategic response.
One such aspect is risk. Following an aggressive high-elasticity trading strategy entails

taking more extreme positions, and hence more risk. Risk itself is endogenous to the aggres-
siveness of other traders: in more efficient markets, prices are tightly related to fundamentals,
while without any active traders, prices are more sensitive to the whims of noise traders.7

Thus, it is unappealing to follow aggressive strategies exactly when they are most needed,
which limits the process of investor competition. In Appendix Section C.2, we present a
setting where investors do not make information choices but learn from prices. We show
that endogenous risk shapes strategic responses; for example when all risk is endogenous
investors do not interact, χ = 0, while otherwise there is a positive response.8

Another aspect is institutional. Many financial institutions face strong mandates from
their ultimate investors in terms of what strategies they are allowed to follow. While these
restrictions can be viewed as an optimal contract solving information asymmetry between
final investors and the asset manager, they inhibit strategic responses. Investment mandates
limit the ability of institutions to react to changes in the behavior of other investors, pushing
χ down relative to an unconstrained setting. Beber et al. (2018) show how explicit mandates
and constraints in active mutual funds prospectuses strongly limit their investment oppor-
tunity set. Investment strategies of banks and insurance companies are also restricted, this
time by their regulatory framework (for example, Basel III capital regulation).

Similarly, asset managers might have different incentives than that of their investors
which pushes their decisions away from maximizing risk-adjusted returns. For example,
Chevalier and Ellison (1997) show that flow-performance sensitivity distorts mutual funds’
investment choices.

C.2 Learning from prices

We consider a model in which agents can learn from prices, which highlights a distinct
mechanism from that of the previous section. Two main assumptions differ: agents cannot
acquire information, and there is residual uncertainty about the asset payoff that cannot be
learned. This setting leads to a new determinant of demand elasticity, beyond risk aversion
and prior information. When many traders are aggressive, prices are more informative. How
should one react? On the one hand, the extra information implies that price variation are
less indicative of future return, and that pushes the investor to trade less aggressively. On
the other hand, the extra information implies that returns appear less risky, and that pushes
the investor to trade more aggressively. Increased price informativeness reveals relatively
more about the fundamental than the payoff risk, exactly because of the presence of resid-

7De Long et al. (1990) first highlighted the importance of endogenous risk for dynamic arbitrage.
8In the first case, the model coincides with that of the previous section when the information cost is

infinitely steep, c′′i /c
′2
i → ∞.
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ual uncertainty.9 Therefore the first effect dominates: the investor responds by being less
aggressive, χ > 0. This response is stronger when residual uncertainty is higher.

C.2.1 Setup

The asset trades at endogenous price p and pays off f + ϵ, with ϵ ∼ N (0, σ2
ϵ ). There is a

continuum of mass 1 of agents indexed by i. Each agent has CARA preferences with risk
aversion ρi. Each agent has a flat prior on f and receives an independent signal µi, such
that µi ∼ N (f, σ2

i ). The asset is in noisy supply x̄+ x with x̄ a constant and x ∼ N (0, σ2
x).

We look for a rational expectations equilibrium, with:

p = A+Bf + Cx. (IA.92)

C.2.2 Equilibrium

Learning from the price. After observing the price, agent i’s posterior belief about the
fundamental f is N (µ̂i, σ̂

2
i ), with:

σ̂−2i = σ−2i +
B2

C2
σ−2x , (IA.93)

µ̂i = σ̂2
i

(
σ−2i µi +

B2

C2
σ−2x s(p)

)
, (IA.94)

where the signal from the price is:

s(p) =
p− A

B
= f +

C

B
x. (IA.95)

Because priors are independent from preferences, we can compute the average belief for
agents of type i (that is for a given σi and ρi):

Ei [µ̂i] = σ̂2
i

(
σ−2i f +

B2

C2
σ−2x

[
f +

C

B
x

])
(IA.96)

= f +
B

C

σ̂i
2

σ2
x

x. (IA.97)

Asset demand. Asset demand qi is given by the standard optimum portfolio choice:

qi =
1

ρi

E [f + ϵ|µi, p]− p

Var [f + ϵ|µi, p]
(IA.98)

=
1

ρi

µ̂i − p

σ̂i
2 + σ2

ϵ

. (IA.99)

9In the model of the previous section, the two effects exactly cancelled out. The response was coming
from changes in information acquired, which is shut down here.
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Market clearing. The total demand for the asset must equal its supply:∫
qidi = x̄+ x. (IA.100)

Plugging in the demand, we obtain∫
1

ρi

1

σ̂i
2 + σ2

ϵ

[
σ̂2
i

σ2
i

µi +
B2

C2

σ̂2
i

σ2
x

f +
B

C

σ̂i
2

σ2
x

x− A−Bf − Cx

]
di = x̄+ x. (IA.101)

We use the law of large numbers as in equation (IA.96) to obtain∫
1

ρi

1

σ̂i
2 + σ2

ϵ

[
f +

B

C

σ̂i
2

σ2
x

x− A−Bf − Cx

]
di = x̄+ x (IA.102)

(IA.103)

This gives:

B = 1, (terms in f) (IA.104)∫
1

ρi

1

σ̂i
2 + σ2

ϵ

[
B

C

σ̂i
2

σ2
x

− C

]
di = 1. (terms in x) (IA.105)

Plugging in the definition of σ̂i
2, we obtain∫

1

ρi

1

σ̂i
2 + σ2

ϵ

[
1

C2

σ̂i
2

σ2
x

− 1

]
di = C−1, (IA.106)∫

1

ρi

1

σ̂i
2 + σ2

ϵ

[
1

C2
σ−2x

1

σ−2i + 1
C2σ−2x

− 1

]
di = C−1, (IA.107)∫

1

ρi

σ̂2
i

σ̂i
2 + σ2

ϵ

[
1

C2
σ−2x − σ−2i − 1

C2
σ−2x

]
di = C−1. (IA.108)

Therefore we have:

C−1 = −
∫

1

ρi

σ̂i
2

σ̂2
i + σ2

ϵ

1

σ2
i

di, (IA.109)

−C−1 =

∫
1

ρi

1

1 + σ2
ϵ

(
σ−2i + 1

C2σ−2x

) 1

σ2
i

di. (IA.110)

Define C̃ = −C, which is positive. We can rewrite:

C̃−1 =

∫
1

ρi

1

1 + σ2
ϵ

(
σ−2i + 1

C̃2σ
−2
x

) 1

σ2
i

di. (IA.111)

The left-hand-side of this equation is decreasing in C̃. The right-hand-side is increasing
in C̃. If C̃ → 0, the left-hand-side goes to ∞ and the right-hand-side goes to 0. If C̃ → ∞,
the left-hand-side goes to 0 and the right-hand-side has a finite positive limit. Therefore,
there is a unique solution to the equation, and a unique linear equilibrium.
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C.2.3 Equilibrium elasticities

We now derive demand elasticities. We show how individual demand elasticities respond to
the aggregate elasticity. Demand is given by:

qi =
1

ρi

µ̂i − p

σ̂i
2 + σ2

ϵ

(IA.112)

=
1

ρi

σ̂2
i

(
σ−2i µi +

B2

C2σ
−2
x s(p)

)
− p

σ̂i
2 + σ2

ϵ

. (IA.113)

Therefore the slope of the demand curve is:

Ei = − 1

ρi

σ̂2
i

σ̂i
2 + σ2

ϵ

(
1

C2
σ−2x − σ̂i

−2
)

(IA.114)

= − 1

ρi

σ̂2
i

σ̂i
2 + σ2

ϵ

(
1

C2
σ−2x − σ−2i − 1

C2
σ−2x

)
(IA.115)

=
1

ρi

σ̂2
i

σ̂i
2 + σ2

ϵ

1

σ2
i

. (IA.116)

Here, we observe clearly the intuition for the role of price informativeness. When prices
are more informative, low σ̂2

i , expected returns respond less to the price, the numerator of the
first fraction. However, the perceived risk of the asset also decreases, the denominator of the
first fraction. Because of residual uncertainty σ2

ϵ , the effect on the asset risk is weaker than
the effect on expected returns: the ratio decreases and the trader becomes less aggressive.

More aggregate elasticity leads to more informative prices, so this mechanism will lead
to a negative response of individual elasticity to aggregate elasticity. Formally, note that∫
i
Ei = Eagg = C̃−1. Plugging in, we obtain:

Ei =
1

ρi

1

1 + σ2
ϵ

(
σ−2i + E2

aggσ
−2
x

) 1

σ2
i

(IA.117)

=
1

ρi

1

σ2
i + σ2

ϵ + σ2
i σ

2
ϵσ
−2
x E2

agg

(IA.118)

Clearly, the individual elasticity Ei is decreasing in the aggregate elasticity Eagg. Lin-
earizing this expression, we obtain the counterpart of the degree of strategic response χ > 0:

χ = − dEi
dEagg

(IA.119)

=
1

ρi

2σ2
i σ

2
ϵσ
−2
x Eagg(

σ2
i + σ2

ϵ + σ2
i σ

2
ϵσ
−2
x E2

agg

)2 . (IA.120)

C.3 Price impact

We now consider a model in the style of Kyle (1989), in which investors have non-negligible
price impact and take it into account when making trading decisions. This leads to a
foundation for a negative degree of strategic response χ. Intuitively, when other traders are
aggressive, I face a very elastic residual supply curve when sending orders to the market. This
implies that my trades will not have a large price impact, hence I can also trade aggressively.
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C.3.1 Price impact

There are I investors indexed by i. Each agent has CARA preferences with risk aversion ρi:

Ui = Ei[−e−ρiWi ], (IA.121)

and initial wealth Wi. The gross risk-free rate is 1, and the random asset payoff f is dis-
tributed N (µ, σ2). The asset is in noisy supply x̄ + x with x̄ an exogenous fixed parameter
and x ∼ N (0, σ2

x).
As in Kyle (1989) we are interested in rational expectation equilibria with imperfect

competition. We look for a linear pricing rule p = A + Cx. We solve for the individual
demand strategies and look for linear strategies of the form:

di = di − Eip (IA.122)

C.3.2 Solving for optimal demand strategies

Investor i maximizes their profit taking as given the residual demand from other investors’
demand schedule. We use market clearing to find the residual supply curve:∑

i

di = x̄+ x

di = x̄+ x−
∑
k ̸=i

dk +

(∑
k ̸=i

Ek

)
p

p(di) =

(∑
k ̸=i

Ek

)−1
︸ ︷︷ ︸

λ−i

di +

(∑
k ̸=i

Ek

)−1
·

(∑
k ̸=i

dk − x̄− x

)
︸ ︷︷ ︸

p−i

. (IA.123)

To find the optimal demand of investor i for the asset, we write their program10

max
d

E{f − p(d)|p−i}d−
ρi
2
Var{f − p(d)|p−i}d2, (IA.124)

max
d

(µ− p−i)d− λ−id
2 − ρi

2
d2σ2.

The first order condition and replacing p−i = p− λ−idi gives us:

di =
µ− p

ρiσ2 + λ−i
. (IA.125)

We can already see that stronger λ−i leads to less aggressive trading because of a larger
price impact. Remember that λ−i is the aggregate of demand elasticities of other investors,
a quantity closely related to aggregate elasticity. We now close the equilibrium to show this
relation more clearly.

10Note that expectation and variances are conditional on the residual demand curve p−i, which is equivalent
to conditioning on p.
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C.3.3 Solving for aggregate demand elasticity

Given our original demand di = di − Eip, we are able to identify the linear terms as:

di =
µ

ρiσ2 + λ−i
; Ei =

1

ρiσ2 + λ−i
=

1

ρiσ2 + (Eagg − Ei)−1
, (IA.126)

where we define the aggregate elasticity:

Eagg =
∑
i

Ei. (IA.127)

Next we show that there is a unique solution for the aggregate elasticity. From the expression
in equation (IA.126), we remark that Ei solves a quadratic equation. We rule out the larger
of the two roots and the solution is11

Ei =
1

2

 2

ρiσ2
+ Eagg −

√(
2

ρiσ2

)2

+ E2
agg

 (IA.128)

To show that there is a unique stable equilibrium we consider the fixed point problem
F (x) = x, with F defined by:

fi(x) =
1

2

 2

ρiσ2
+ x−

√(
2

ρiσ2

)2

+ x2

 , (IA.129)

F (x) =
∑
i

fi(x). (IA.130)

The function F is positive, increasing, and concave. Moreover F (0) = 0, F ′(0) = I/2, and
limx→+∞ F ′(x) = 0, we conclude that there is a unique non-zero solution for Eagg as long as
I ≥ 3.

The relation derived in (IA.128) between Ei and Eagg is not linear. We can approximate
this equation linearly by Ei = E i − χEagg with

χ = −1

2

1− Eagg√
E2
agg +

(
2

γiσ2

)2
 < 0 (IA.131)

This expression gives bounds on the value of χ: −1/2 ≤ χ < 0.

C.4 Imperfect information

Assume your optimal elasticity is Ei = E i−χE [Eagg|Fi]. With perfect knowledge, you obtain:

Ei = E i − χEagg Assume the agent observes a signal Êagg = Eagg + ϵ (with variance σ2
ϵ ) and

has a prior Eagg ∼ N
(
Ē , σ2

)
. Then we have:

E
[
Eagg|Êagg

]
=

1
1
σ2
ϵ
+ 1

σ2

(
1

σ2
ϵ

Êagg +
1

σ2
Ē
)
. (IA.132)

11The larger root is such that Ei > Eagg which violates
∑

i Ei = Eagg.
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Therefore:

Ei = E i − χ
1

1
σ2
ϵ
+ 1

σ2

1

σ2
Ē − χ

1
σ2
ϵ

1
σ2
ϵ
+ 1

σ2︸ ︷︷ ︸
<1

Êagg. (IA.133)

C.5 Partial equilibrium thinking

We repeat the calculation of Section 2.3 on the rise in passive investing in a situation with
partial equilibrium thinking.

We assume that all investors are homogenous and their initial elasticity is Ei = E0. What
happens to the economy if a fraction 1−α of these investors become passive? Their elasticity
reduces to zero. To model partial equilibrium thinking, we assume that active investors only
react to the effect of the switch to passive on aggregate elasticity and do not take into account
the collective response of other active investors.

Because investors are infinitesimal, this corresponds to forecasting a change in elasticity
of ∆E forecast

agg = −(1− α)E0. This implies that each active investor changes her elasticity by

∆Ei = −χ∆E forecast
agg = χ(1− α)E0. (IA.134)

Aggregating across all investors, the new aggregate elasticity is:

EPET
NEW = αE0 (1 + χ(1− α)) = αE0 + (1− α)χαE0. (IA.135)

The new elasticity with partial equilibrium thinking is in contrast to our baseline model in
Section 2.3, ENEW :

EPET
NEW − ENEW = (1− α)E0αχ

αχ

1 + αχ
. (IA.136)

The difference is positive when χ > 0. Because investors do not account for the response
of others, they overreact to the initial change in elasticity. This leads to a relatively higher
final level of aggregate elasticity and is therefore akin to a larger degree of strategic response.
For some parameter values, the response is so strong that it flips the sign of the change in
aggregate elasticity.
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D Data

D.1 Institutional holdings data

Institutional investment managers with $100 million or more in assets under their investment
discretion are required to disclose their ownership of Section 13(f) securities as of the end of
each calendar quarter to the SEC within 45 days after the end of the calendar quarter. The
filing requirement applies to both U.S. domestic investment managers, and, under certain
conditions regarding the course of their business, foreign investment managers. The official
list of 13(f) securities is made available by the SEC shortly after each quarter end. It
primarily includes U.S. exchange-traded stocks, shares of closed-end investment companies,
and shares of exchange-traded funds.

We obtain data on 13F filings from 2001Q1 until 2017Q4 from Backus et al. (2020).
Mirroring their approach, we extend their sample until 2020Q4. To do so we start with
a SEC linking table, which provides a list with links to all 13F-HR and 13F-HR/A filings
of a given quarter. Based on those links, we scrape all filings, and subsequently parse the
filings based on a Perl script generously provided by Backus et al. (2019). The script corrects
common filing issues in 13F filings. Finally, we merge the scraped 13F data with CRSP and
Compustat.

D.2 CRSP and Compustat

We obtain market capitalization data for stocks from CRSP and apply standard filters: we
keep stocks traded on NYSE, NASDAQ and AMEX, and filter to ordinary common shares
with share codes 10, 11, 12 and 18 in CRSP. These stocks make up the universe of all assets
in our model.

Additional stock-level information comes from quarterly and annual Compustat files. In
particular, we closely follow Koijen and Yogo (2019) and their data definitions for building
a set of stock characteristics: book equity, investment (defined as growth in total assets),
operating profitability (as defined in Fama and French (2015)), and dividend yield as a
fraction of book equity. Characteristics are winsorized at the 2.5% and the 97.5% level each
quarter. Characteristics that are denominated in dollar values, such as market equity and
book equity, are denominated in million dollars.

We match CRSP and Compustat based on the standard linking table on WRDS. Finally,
we use CUSIP identifier information from CRSP to merge the CRSP-Compustat merged
stock-level data to 13F holdings. We exclude stocks for which institutional ownership is
greater than 100% based on the 13F data.

D.3 Measuring passive investing

Passive investors are insensitive to prices. At each date, we identify passive investors as
investors with elasticity close to zero in a Koijen and Yogo (2019) type demand system:

log
wik

wi0

− pk = d0i + d′1itXk − Efixed
i pk + ϵik, (IA.137)
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where Xk is restricted to log book equity. An investor is defined as passive if their fixed
elasticity is close to zero, i.e. Efixed

i < κ, for small κ. We choose κ = 0.06 to calibrate
the level of passive investing, and define a stock’s passive share as the ownership-weighted
average of an indicator that is 1 if the investor is passive, and zero otherwise. That is,

|Activek| ≡ 1−
∑
i

wikAi

exp(pk)︸ ︷︷ ︸
ownership share

1{Efixedi <κ}. (IA.138)

Figure 5 shows the the cross-sectional median of |Activek| over time. We validate our
measure in the setting of Russell index switching. Specification (4) of Appendix Table IA.5
shows that our measure of passive investing in the cross-section strongly responds to stocks
switching between the Russell 1000 and 2000 indices, by about 4% of total ownership.

D.4 Additional data definitions

There are a number of additional data steps that define the final estimation sample.

Defining the outside asset. For the logit demand system we define any stock with
missing stock characteristics or CRSP share code 12 or 18 in a given quarter as part of the
outside asset for that particular quarter. Of the remaining stocks, any stock with fewer than
20 investment managers invested in it is also part of the outside asset.

Defining the household sector. Investment managers with fewer than 100 stocks in their
portfolio are filtered out, such that their assets are part of the residual household sector. The
residual household sector contains direct household holdings, but also an amalgamation of
holdings from small investment managers with AUM below the reporting threshold, certain
foreign investors, and investment managers with fewer than 100 stocks in their portfolio. As
in Koijen and Yogo (2019), this residual household sector is modeled as one investor in the
demand system, to ensure that the number of shares held adds up to the number of shares
outstanding.

Measuring the investment universe. We define any stock that an investment manager
has held over the past three years (including the current period) as part of her investment
universe. This follows Koijen and Yogo (2019), who show that the measured investment
universe using this approach is very stable over time. We extend this finding to our sample
in Table IA.1. During the estimation procedure, the investment universe is primarily used
to construct our instruments for a stock’s market equity as in equation (23), and a stock’s
aggregate demand elasticity as in equation (24).

Pooling investors during estimation. For our baseline estimation, we pool together
investors that hold fewer than 1,000 stocks in a quarter and are classified as active. In-
vestors are grouped based on their assets under management, with the number of groups
chosen such that on average, each group holds 2,000 stocks. Specifically, we assume that all

23



investors within the same group have the same demand parameters, except for the constant
of equation (IA.154), which we leave as investor-specific (for example, this absorbs variation
in quantity of outside asset wi0). That is, we estimate equation (IA.154) at the group level
with an investor fixed effect.

Transforming characteristics. For tractability in estimation, we transform the charac-
teristics log book equity, investment, and operating profitability to be normally distributed.
Specifically, within each investor-group and date, we first apply the inverse of its empirical
cumulative distribution function to these characteristics. Then, we apply the cumulative dis-
tribution function of a normal distribution with matching mean and variance to transform
the characteristics to be normally distributed while maintaing the same location and scale
as the original data. We do not transform the dividend yield because many stocks have a
dividend yield of zero.

Weighting investors during estimation. For the pooled regression in equation
(IA.155), we weight each observation such that each date receives equal weights, and that
within each date, each investor-group contributes equally to the regression. That is, each
observation within a date receives the weight 1/|Ki|. For example, consider a simplified
example with two investors, two assets, and just one period. Investor A holds both assets,
while investor B holds only one of the assets. We would assign weight of 0.5 to each position
of investor A, and a weight of 1 to the observation for investor B. The estimate of χ is
robust to different weighting schemes, as shown in Table 2.
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E Identification Strategy

E.1 Moment conditions

We estimate the model using the method of moments. All of the moment conditions derive
from the identifying assumption of equation (22). We list these moments here:

E
[
ϵjks1{j=i,s=t}

]
= 0,∀i, t (IA.139)

E
[
ϵjksXks1{j=i,s=t}

]
= 0,∀i, t (IA.140)

E
[
ϵjksp̂ks,i1{j=i,s=t}

]
= 0,∀i, t (IA.141)

E
[
ϵjksXksp̂ks,j1{j=i,s=t}

]
= 0,∀i, t (IA.142)

E
[
ϵjktÊagg,kt

]
= 0 (IA.143)

E
[
ϵjktÊagg,ktp̂kt,j

]
= 0 (IA.144)

E
[
ϵjktÊagg,ktXkt

]
= 0 (IA.145)

There are exactly as many moment conditions as model parameters. To match our restric-
tions on ζ and E1i, we restrict Xkt in moments (IA.142) and (IA.145) to contain only log
book equity instead of the full set of stock characteristics in our baseline specification. For
brevity, we omit this qualification, except when ambiguous, in the remainder of the section.

E.2 Solving the reflection problem

One challenge for identification is the reflection problem. How can we separate the individual
component of demand elasticity from the strategic response to other investors? We show that
the presence of variation in investor population across stocks allows to solve this problem.
To isolate this argument from other identification concerns, we assume that we observe
individual elasticities, Eik. For exposition purposes, we focus on a simplified version of
the model in which E i does not depend on asset characteristics. Similarly, we omit time
subscripts for brevity.

We provide sufficient conditions for the uniqueness of a decomposition of the individual
elasticities into investor-specific elasticities Ei and the strategic response controlled by χ.
After proving this result, we come back to the economic content and the empirical relevance
of these conditions.

Before stating the theorem, we introduce a few notations. We define the undirected graph
G of investor-stock connections. The vertices and the nodes are the investors i and the stocks
k. There is an edge between i and k if and only if i ∈ Ik. There are no edges between two
investors or two stocks.

Theorem 2. A decomposition of demand elasticities {Eik}i,k into individual elasticities {E i}i
and the degree of strategic response χ is unique if:

(a) The graph G of investor-stock connections is connected.

(b) Position-weighted averages of demand elasticities are not constant across stocks: there
exists k and k′ such that

∑
i∈Ik wik/PkAiE i ̸=

∑
i∈Ik′

wik′/pk′AiE i.
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Proof. Let us assume that there exist two distinct decompositions ({E (1)
i }i, χ(1)) ̸=

({E (2)
i }i, χ(2)) and the two conditions (a) and (b) hold. Each decomposition for l ∈ {1, 2}

satisfies the two conditions of the elasticity layer

Eagg,k =
∑
i∈Ik

wikAi/PkEik, for all k ∈ K (IA.146)

Eik = E (l)
i − χ(l)Eagg,k, for all k ∈ K and i ∈ Ik. (IA.147)

We subtract the decomposition of Eik for l = 1 from the decomposition for l = 2 and obtain:(
χ(2) − χ(1)

)
Eagg,k = E (2)

i − E (1)
i , for all k ∈ K and i ∈ Ik. (IA.148)

Here we see immediately that if χ(1) = χ(2), then for all i, E (1)
i = E (2)

i , thus violating the
initial assumption of distinct decompositions. Hence, we focus on the case of χ(1) ̸= χ(2).

We define the function:

f(x) =

{
(χ(2) − χ(1))Eagg,x for x ∈ K
E (2)
x − E (1)

x for x ∈ I.
(IA.149)

We restate the equality of equation (IA.148) as:

f(x) = f(x′), if and only if there is an edge between x and x′ on G. (IA.150)

Therefore, since the graph G is connected: ∀x, x′, f(x) = f(x′), and f is a constant. We write
the constant f = a, and plug in the constant in the aggregation of individual elasticities:

Eagg,k =
∑
i∈Ik

wikAi/PkEik =
∑
i∈Ik

wikAi/PkE (1)
i − χ(1)

∑
wikAi/PkEagg,k (IA.151)

⇐⇒ (1 + χ(1))Eagg,k =
∑
i∈Ik

wikAi/PkE (1)
i (IA.152)

⇐⇒ (1 + χ(1))
a

χ(2) − χ(1)
=
∑
i∈Ik

wikAi/PkE (1)
i for all k, (IA.153)

where we use Eagg,k = a/(χ(2) − χ(1)). Equation (IA.153) violates assumption (b), which
concludes the proof.

The intuition behind theorem 2 is that identification relies on comparing the behavior of
one investor for two different stocks with different populations of investors. If this investor
trades less aggressively when surrounded by more aggressive investors, we conclude that the
degree of strategic response χ is positive. A challenge to implementing this comparison is
that we already need to know the elasticity of these other investors. This is a chicken-and-egg
question. The ability to find a unique solution to this problem relies on being able to cycle
through investors with enough variation in composition: this is the essence of conditions (a)
and (b).

To better understand why these conditions are important, we show examples of how
the model is not identified when either (a) or (b) is violated. Starting with (a), let us
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consider the case where each stock has its own non-overlapping population of investors. In
this case, there is no identification. Because a given investor only invests in one stock, it
is not possible to tell if this investor is aggressive because of her own characteristics or in
response to the other investors. As an example that violates condition (b), consider the
case in which all investors have the same size and relative portfolio positions such that:
∀k, k′, wikAi/Pk = wik′Ai/pk′ . Investor composition is the same for all stocks and therefore
there is no information in comparing different stocks. Relatedly, we could also consider a
violation of (b) where all individual elasticities are identical across investors: E i = E . Then,
for all k we have

∑
i∈Ik wik/PkAiE i = E : the aggregate elasticity for all stocks is identical.

Intuitively, even though there is variation in investor composition across stocks, all investors
behave the same way in terms of elasticity. This is equivalent to having a single investor,
and we cannot separate individual elasticities from the response to other investors.

How can we assess these conditions empirically? The graph G of investor-stock connec-
tions can be observed directly in our data and we can assess immediately that condition (a)
is satisfied using known algorithms such as depth-first-search. Condition (b) is potentially
more challenging because it relies on parameter estimates E i. However, inspecting the con-
dition shows it holds generically. Condition (b) stipulates the equality of K linear forms
applied to the vector (E i)i. It is violated if and only if (E i)i ∈

⋂
k>1(wk − w1)

⊥, a set of
measure 0 for almost all combinations of wk. In addition, there is still the possibility of
verifying whether the condition is satisfied empirically, once the econometrician has found a
set of parameter estimates.

E.3 Numerical procedure

We describe our estimation procedure, which solves a series of nested problems.

Step 1. Given a guess for (χ, ξ, ζ ′) and {Eagg,kt}kt, we can partial out variation in investors’
portfolios related to the aggregate elasticity, and estimate all remaining model parameters
by two-stage least squares regression investor-date group by investor-date group. This cor-
responds to estimating the regression (IA.154) for each investor-date pair it:

log
wikt

wi0t

− pkt − χ Eagg,kt pkt − ξ Eagg,kt − ζ ′ Eagg,kt Xkt

= d0it + d′1itXkt − (E0it + E ′1itXkt) pkt + ϵikt, (IA.154)

where pkt and Xktpk are instrumented by p̂kt,i and Xktp̂kt,i. Estimating these regressions is
equivalent to solving the moment conditions (IA.139) to (IA.142).

Step 2. Given a guess for (χ, ξ, ζ ′), we look for equilibrium values of {Eagg,kt}kt. We start
from the aggregate elasticities implied by the model of Koijen and Yogo (2019). We run
step 1 above. We combine the individual elasticities E it with the parameter χ in solving
explicitly for the equilibrium elasticity implied by solving the linear system of equations (14)
and (18). Because the individual elasticities may be negative, we truncate them at zero in
this aggregation step. We then update our guessed aggregate elasticity by taking a weighted
average of the previous iteration and these new values with weights of 75% and 25%. We
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repeat this updating process until the values of {Eagg,kt}kt converge. This step ensures that
our estimated model satisfies the 2-layer equilibrium. We then proceed to construct the
instrument Êagg,kt based on equation (24).

Step 3. We estimate χ, ξ and ζ ′. We start from a guess for (χ, ξ, ζ ′) and run step 2 to find
the aggregate elasticities it implies. With these values, we estimate the pooled regression of
equation (20):

log
wikt

wi0t

− pkt = d0it + d′1itXkt + ξ Eagg,kt + ζ ′ Eagg,kt Xkt − (E0it + E ′1itXkt − χ Eagg,kt) pkt + ϵikt,

(IA.155)

using two-stage least squares with all the instruments of the investor-date-level regres-
sion, Êagg,kt, Êagg,ktXkt and Êagg,ktp̂kt,i. This is a large-scale regression with many fixed effects
and investor-time-specific coefficients. We speed up the estimation of this large-scale regres-
sion tremendously by taking advantage of the Frisch-Waugh-Lovell theorem. We absorb all
individual-date-level variables using investor-date-specific regressions and are left with only
the coefficients χ, ξ and ζ ′ to estimate in the pooled data.

Define as f(·) the function that maps the guess (χ, ξ, ζ ′) to estimates for χ, ξ and ζ ′ in
the pooled regression, and define the fixed point function F (χ, ξ, ζ ′) ≡ f(χ, ξ, ζ ′)− (χ, ξ, ζ ′)
as the difference between the estimates from the pooled regression and the guess.

Step 4. The pooled regression gives F (χ, ξ, ζ ′). We use a multivariate quasi-Newton
method, in which we approximate the Jacobian of F numerically via finite differences by
varying χ, ξ and ζ ′ by a small ϵ, to find a root of F (χ, ξ, ζ ′), which constitutes a fixed
point for (χ, ξ, ζ ′). With such a fixed point, we are sure that our estimates satisfy si-
multaneously all the moment conditions of Appendix Section E.1 and the 2-layer equilibrium.

Algorithm E.1 summarizes the numerical procedure to obtain a fixed point for (χ, ξ, ζ ′)
in pseudo-code for our baseline estimation where ζ ′ is restricted to be zero for asset charac-
teristics other than log book equity. We denote by ζ the remaining interaction between log
book equity and the aggregate elasticity.

Algorithm E.1: Numerical procedure solving for a fixed point of (χ, ξ, ζ).

1 begin

2 I n i t i a l i z e s t a r t i n g va lue s (χ(0), ξ(0), ζ(0))
3 h ← 0

4 while (∥F (χ(h−1), ξ(h−1), ζ(h−1))∥ > tol) or (h = 0)

5 I n i t i a l i z e {E(0)agg,kt}kt at {Efixed,kt}kt
6 for n in 1 : N

7 Update i t−s p e c i f i c parameters c ond i t i o na l on {E(n−1)
agg,kt}kt and (χ(h), ξ(h), ζ(h)) ( Step 1 ) .

8 Aggregate to determine {E(n)
agg,kt}kt c ond i t i o na l on (χ(h), ξ(h), ζ(h)) ( Step 2 ) .

9 end

10 Determine f(χ(h), ξ(h), ζ(h)) , i . e . e s t imate (χ, ξ, ζ) c ond i t i o na l on {E(N)
agg,kt}kt ( Step 3 ) .

11 F (χ(h), ξ(h), ζ(h))← f(χ(h), ξ(h), ζ(h))− (χ(h), ξ(h), ζ(h))

12 J1 ← (F (χ(h) + ϵ, ξ(h), ζ(h))− F (χ(h), ξ(h), ζ(h)))/ϵ

13 J2 ← (F (χ(h), ξ(h) + ϵ, ζ(h))− F (χ(h), ξ(h), ζ(h)))/ϵ

14 J3 ← (F (χ(h), ξ(h), ζ(h) + ϵ)− F (χ(h), ξ(h), ζ(h)))/ϵ
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15 Ĵ(χ(h), ξ(h), ζ(h))← (J1, J2, J3)

16 (χ(h+1), ξ(h+1), ζ(h+1))← (χ(h), ξ(h), ζ(h))− Ĵ−1(χ(h), ξ(h), ζ(h))F (χ(h), ξ(h), ζ(h)) ( Step 4)
17 h ← h + 1
18 end

19 return (χ(h), ξ(h), ζ(h))
20 end

Lines 2 and 3 initialize the numerical procedure. Starting values (χ(0), ξ(0), ζ(0)) are
based on past experience with the algorithm as the Newton method may fail for starting
values too far removed from a root of F . Line 4 starts a while loop that ends when a
solution is found, i.e. when the norm of F is below some small tolerance level. Lines 5
to 9 solve for an elasticity equilibrium conditional on the current iteration (χ(h), ξ(h), ζ(h)):
First, we initialize aggregate elasticities based on a fixed elasticity model (IA.137). Then, we
iterate back and forth between estimating investor-date (it) specific parameters conditional
on aggregate elasticities and aggregating individual elasticities until an equilibrium is found.
In line 10 we estimate the pooled regression of equation (IA.155) conditional on {E (N)

agg,kt}kt.
Line 11 updates the fixed point function. Line 12 to 15 approximate the Jacobian of F at
(χ(h), ξ(h), ζ(h)) via a finite difference approach. Line 16 updates χ, ξ and ζ via a Newton
step, and line 17 increases the iterator.
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F Standard Errors

F.1 GMM standard errors with equilibrium feedback

Moment conditions in matrix form. The moment conditions from Section E.1 can be
re-written in matrix form as:12

g(θ̂) =
1

N
Z ′
(
y −Xθ̂

)
= 0, (IA.156)

where θ encompasses all K = K1 +K2 parameters of the model, and at the solution θ̂,
the moment conditions are zero, and N denotes the total number of observations.

The matrix X is the N × K matrix of moment observations and Z is the matrix of
instruments by Z. We split the parameters in two groups: K1 parameters that are fixed
across investor groups and time, and K2 parameters that are specific to each investor group
and time. K1 is small and corresponds to the parameters χ, ξ, and ζ ′ on Eagg,kpk, Eagg,k,
and Eagg,kXk, respectively. In our baseline specification, we restrict ζ ′ to be zero for asset
characteristics other than log book equity, and thus K1 = 3. In contrast, the number of
parameters K2 is large, combining parameters d0it, d

′
1it, E0it, E ′1it for each investor-group

and date. Consequently, the matrix X is large but has an almost block diagonal struc-
ture. “Almost” block diagonal because of the K1 few columns of X correspond to moment
conditions affecting all investor groups and time, while the remaining K2 columns are block-
diagonal. The same applies to the instrument matrix Z. We show how to use this structure
to implement practically the calculation of standard errors in Section F.2.

GMM standard errors. Since the model is exactly identified, by applying the delta-
method, we get:

√
N
(
θ̂ − θ

)
d−→ N

(
0,
[
d(θ̂)

]−1
S
[
d(θ̂)′

]−1)
, (IA.157)

where d(θ) ≡ ∂g(θ)
∂θ′

is the Jacobian of the moment conditions with respect to the param-
eters θ, and S is the covariance matrix of the moment conditions.

The standard errors of θ̂ are then the square root of the diagonal of cov(θ̂):

cov(θ̂) =
1

N

[
d(θ̂)

]−1
S
[
d(θ̂)′

]−1
(IA.158)

Clustered covariance of moment conditions. We first discuss how to estimate the
covariance matrix of moment conditions S. Institutional investors’ unobserved latent demand
for a stock is likely primarily correlated along two dimensions. First, the latent demand for a
stock is likely correlated across investors. For example, investors might have correlated tastes

12In our baseline estimation, we weight data points such that each investor group receives equal weight.
The moment condition (IA.156) remains the same, other than that the matrices X, Z, and y are re-weighted
accordingly. Note that this re-weighting is different from weighting the moment conditions in GMM, for
which we use equal weighting as in standard instrumental variables regressions.
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for specific stocks (e.g., Tesla), or there might be omitted stock characteristics investors form
their demand over (e.g., the stock’s environmental score). Second, the latent demand by an
institutional investor is likely correlated across stocks. For example, institutions with more
stocks in their investment universe likely have less variation in latent demand than investors
with a more concentrated investment universe, even in the presence of institution fixed effects.
Consequently, we estimate a two-way cluster-robust covariance matrix of moments, where
we cluster both by stock and by institutional investor. We implement the two-way clustering
as described in Cameron et al. (2011), by first estimating a clustered covariance matrix by
stock and by institution separately, adding them up, and subtracting a clustered covariance
matrix by the interaction of institution-stock. We also follow their practical considerations
(e.g., regarding degrees-of-freedom adjustment) and best practices.

In the presence of high-dimensional fixed effects, it becomes possible that multi-way
clustered covariance matrices are not positive-definite. Standard statistical packages thus
guarantee that the covariance matrix is positive-definite by setting any negative eigenval-
ues to zero. For reasons of computational feasibility, we cannot follow this approach, nor
should we. As discussed in detail in Section F.2, we only seek to calculate the standard
errors for parameters χ, ξ, and ζ ′, which allows us to avoid explicitly calculating the entire
covariance matrix. A potential drawback of this approach is that we cannot guarantee that
the covariance matrix is positive-definite, especially when we add equilibrium feedbacks in
Section F.1. However, this is not an issue. As Cameron et al. (2011) emphasize, as long
as the subcomponent of the covariance matrix corresponding to the parameters of interest
(here: χ, ξ, ζ ′) is positive-definite, the standard errors are appropriate.

Jacobian of moment conditions. The Jacobian of the moment conditions, d(θ), is given
by:

d(θ) =
∂g(θ)

∂θ′
(IA.159)

=
1

N

∂Z(θ)′ (y −X(θ)θ)

∂θ′
(IA.160)

=
1

N

(
∂Z(θ)′

∂θ′
ϵ(θ)− Z(θ)′

(
X(θ) +

∂X(θ)

∂θ′
θ

))
(IA.161)

In standard, exactly-identified IV, the data matrix X and the instrument matrix Z are
fixed, and thus the Jacobian of the moment conditions simplifies to d(θ) = −Z ′X. But
because the aggregate elasticity Eagg,k satisfies the 2-layer equilibrium, and its instrument
is constructed based on model parameters as well, the Jacobian of the moment conditions
involves additional terms which we will develop below.

Of course, not all data columns of X or instruments Z depend on the model parameters,
nor do all model parameters matter for these non-fixed columns. In Section F.2, we show
how to conveniently partition the matrices X and Z, and the parameter space, to both
re-write equation (IA.161) more compactly, and feasibly implement it.
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Jacobian of data matrix ∂X/∂θ′. The aggregate elasticity Eagg,kt has to satisfy the 2-
layer equilibrium:

Eagg,kt =
1−

∑
i oikt

(
uit,0 + u′it,1Xkt

)
1 + χ|Activekt|

, (IA.162)

where oikt ≡ wiktAit

Pkt
is the relative share of asset k held by investor i at time t, and where

uit,0 ≡ 1−E0it captures the average investor-specific elasticity component, and u′it,1 ≡ −E ′1it
captures the investor-specific elasticity component based on asset characteristics Xkt. We
again restrict the set of asset characteristics to log book equity. uit,0 and u′it,1 are the
parameters we estimate from the data.

Therefore, the derivative of Eagg,kt with respect to parameters involves three types of
terms:

∂Eagg,kt
∂χ

=
−|Activekt|

1 + χ|Activekt|
Eagg,kt, (IA.163)

∂Eagg,kt
∂uit,0

=
−oikt

1 + χ|Activekt|
, ∀i, (IA.164)

∂Eagg,kt
∂u′it,1

=
∂Eagg,kt
∂uit,0

Xkt, ∀i (IA.165)

The derivatives of Eagg,kt pkt and Eagg,kt Xkt with respect to these parameters are deter-
mined equivalently by applying the chain rule.

Jacobian of instrument matrix ∂Z/∂θ′. Similarly, the instrument for the aggregate
elasticity can be written as:

Êagg,kt =
1−

∑
i ôikt

(
uit,0 + u′it,1Xkt

)
1 + χ|Activekt|

, (IA.166)

where ôikt is the relative share of asset k held by investor i at time t under the counterfac-
tual portfolio weighting scheme whereby each investor invests equally within their investment
universe.

Again, the derivative of Êagg,kt with respect to parameters involves three types of terms:

∂Êagg,kt
∂χ

=
−|Activekt|

1 + χ|Activekt|
Êagg,kt, (IA.167)

∂Êagg,kt
∂uit,0

=
−ôikt

1 + χ|Activekt|
, ∀i, (IA.168)

∂Êagg,kt
∂u′it,1

=
∂Êagg,kt
∂uit,0

Xkt, ∀i (IA.169)

Again, the derivatives of Êagg,kt p̂kt and Êagg,kt Xkt with respect to these parameters are
determined equivalently by applying the chain rule.
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F.2 Implementation

Partitioning parameters. The K ×K matrix d(θ) is very large, and inverting it is com-
putationally infeasible. To solve this issue, it proves useful to partition the set of parameters
θ into the K1 small number of parameters θ1 = (χ, ξ, ζ ′) estimated pooled across investors
and time, and the K2 large number of parameters θ2 estimated for each investor group and
time.

The moment conditions can be partitioned accordingly into g1(θ) and g2(θ). The Jacobian
of the moment conditions inherits the partitioning of the moment conditions:

d(θ) =
∂g(θ)

∂θ′
=

[
∂g1(θ)
∂θ′1

∂g1(θ)
∂θ′2

∂g2(θ)
∂θ′1

∂g2(θ)
∂θ′2

]
=


D11︸︷︷︸

K1×K1

D12︸︷︷︸
K1×K2

D21︸︷︷︸
K2×K1

D22︸︷︷︸
K2×K2

 (IA.170)

D11 =
∂g1(θ)

∂θ′1
=

−Z ′1X1

N
+

1

N

([
∂Z1

∂χ

]′
ϵ− Z ′1

∂X1

∂χ
θ1, 0K1×(K1−1)

)
(IA.171)

D21 =
∂g2(θ)

∂θ′1
=

−Z ′2X1

N
− 1

N

(
Z ′2

∂X1

∂χ
θ1, 0K2×(K1−1)

)
(IA.172)

D12 =
∂g1(θ)

∂θ′2
=

−Z ′1X2

N
+

1

N

([
∂Z1

∂θ2,1

]′
ϵ− Z ′1

∂X1

∂θ2,1
θ1, . . . ,

[
∂Z1

∂θ2,K2

]′
ϵ− Z ′1

∂X1

∂θ2,K2

θ1

)
(IA.173)

D22 =
∂g2(θ)

∂θ′2
=

−Z ′2X2

N
− 1

N

(
Z ′2

∂X1

∂θ2,1
θ1, . . . , Z

′
2

∂X1

∂θ2,K2

θ1

)
(IA.174)

The relevant partial derivatives of X1 and Z1 with respect to χ and θ2 were defined in
equations (IA.163) to (IA.169). Partial derivatives to θ2 are zero for institution-time specific
parameters that are not uit,0 or the element of u′it,1 associated with log book equity.

Computing d(θ)−1. We use this partition to compute the inverse of the Jacobian of the
moment conditions, d(θ)−1. To see this, define the Schur complement of D11 in d(θ) as:

d(θ)/D22 ≡ D11 −D12D
−1
22 D21 (IA.175)

Then, the inverse of the Jacobian of the moment conditions can be expressed with the
help of the Schur complement:

(d(θ))−1 =

(
D̃11 D̃12

D̃21 D̃22

)
(IA.176)

D̃11 = (d(θ)/D22)
−1 (IA.177)

D̃12 = − (d(θ)/D22)
−1D12D

−1
22 (IA.178)

D̃21 = −D−122 D21 (d(θ)/D22)
−1 (IA.179)

D̃22 = D−122 +D−122 D21 (d(θ)/D22)
−1D12D

−1
22 (IA.180)
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As shown below, only D̃11 and D̃12 are needed to compute the covariance matrix of the
parameters of interest, cov(θ1).

Besides matrix multiplications, computing D̃11 and D̃12 involves the large K2×K2 matrix
inverse D−122 . But while d(θ) is not quite block-diagonal, D22 is, and thus its inverse can be
easily computed by evaluating the inverse of each diagonal block separately. And while these
blocks are still large — D22 is only block-diagonal in the time dimension — matrices of size
K2,t ×K2,t are small enough to be computed swiftly on a desktop computer.

Standard errors for parameters θ1. Recall the general expression for the covariance
matrix of the parameters θ:

cov(θ̂) =
1

N

[
d(θ̂)

]−1
S
[
d(θ̂)′

]−1
(IA.181)

To make progress, we partition the covariance matrix of moment conditions in a similar
way:

S =

(
S1 S1,2

S ′1,2 S2

)
, (IA.182)

where again S1 is of size K1 ×K1, S2 is K2 ×K2, and S1,2 is K1 ×K2.
From here, after some matrix multiplications, we arrive at the final expression for the

covariance matrix of the K1 parameters of interest, θ1:

cov(θ̂1) =
1

N

(
D̃11S1D̃

′
11 + D̃11S1,2D̃

′
12 + D̃12S

′
1,2D̃

′
11 + D̃12S2D̃

′
12

)
(IA.183)

Conveniently, cov(θ̂1) does not involve the large matrix D̃22, which, unlike D22, does not
have a block-diagonal structure. Consequently, due to its large size, it would be impossible
to hold D̃22 in memory with a conventional computer. But using the partitions, as shown
above, makes it unnecessary to compute D̃22.

As discussed in Section F.1, for S we use two-way clustering by stock k and institu-
tional investor i. So following Cameron et al. (2011), the covariance matrix of the moment
conditions is estimated as:

Ŝ1 =
K∑
k=1

Z ′1,sϵ̂k ϵ̂
′
kZ1,s +

K∑
i=1

Z ′1,iϵ̂k ϵ̂
′
kZ1,i −

K∩I∑
ik=1

Z ′1,ik ϵ̂k ϵ̂
′
kZ1,ik (IA.184)

Ŝ1,2 =
K∑
k=1

Z ′1,sϵ̂k ϵ̂
′
kZ2,s +

K∑
i=1

Z ′1,iϵ̂k ϵ̂
′
kZ2,i −

K∩I∑
ik=1

Z ′1,ik ϵ̂k ϵ̂
′
kZ2,ik (IA.185)

Ŝ2 =
K∑
k=1

Z ′2,sϵ̂k ϵ̂
′
kZ2,s +

K∑
i=1

Z ′2,iϵ̂k ϵ̂
′
kZ2,i −

K∩I∑
ik=1

Z ′2,ik ϵ̂k ϵ̂
′
kZ2,ik (IA.186)
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While there are no issues for the submatrices Ŝ1 and Ŝ1,2, the submatrix Ŝ2 is of size
K2 ×K2, and thus again potentially too large to hold in memory. To avoid this, we directly
compute:

D̃12Ŝ2D̃
′
12 =

K∑
k=1

D̃12Z
′
2,sϵ̂k ϵ̂

′
kZ2,sD̃

′
12 +

K∑
i=1

D̃12Z
′
2,iϵ̂k ϵ̂

′
kZ2,iD̃

′
12 −

K∩I∑
ik=1

D̃12Z
′
2,ik ϵ̂k ϵ̂

′
kZ2,ikD̃

′
12

(IA.187)

By multiplying these matrices in the right order, holding matrices of size K2 × K2 in
memory is avoided.
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G Trading Big and Small Stocks

We investigate whether firms trade big and small stocks differently. Our estimates of elas-
ticities by stocks suggest that the demand for large stocks is more inelastic (see Figure 3).
To explain this result, one hypothesis is that large stocks mechanically tend to receive a
high portfolio weight and that investors are unwilling to adjust their largest positions. For
example, a 10% relative increase in portfolio weight would create much larger tracking error
to the index for large positions than for small positions. Also, the granular nature of large
stocks imply that they have fewer substitutes.

To complement our structural results and investigate this hypothesis, we compare the
trading activity of investors across the distribution of their portfolio. For a given investor-
quarter, we compute for each stock the squared relative change in the number of shares:

Trading Activityi,k,t =

[(
Ai,twik,t

pk,t
− Ai,t−1wik,t−1

pk,t−1

)
/
Ai,twik,t

pk,t

]2
(IA.188)

We sort positions by portfolio weights, and compute the ratio of the cumulative sum of
trading activity to the total sum. This gives us a relation between the percentile of portfolio
weight and the cumulative share of total trading activity. We average this relation within
size groups of investors and present our results in Figure IA.1 for various dates.

If trading activity is as intense for all portfolio weights, this curve should coincide with
the 45-degree line. Instead, we see that the curve is always above the 45-degree line and
particularly flat along the largest investor positions. This implies that there is relatively
less trading activity for the largest stocks. In addition, we observe that this pattern is more
pronounced for the largest investors (panel D) than for small investors (panel A). Because
larger investors are more important for the biggest stocks, this will amplify the lack of trading
activity for the biggest stocks.
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Figure IA.1. Trading activity across portfolio positions. Figure IA.1 presents
the cumulative share of trading activity (defined in equation (IA.188)) by quantiles of
investor portfolio weights. We aggregate the statistics by date and quartiles of assets
under management.



H Appendix Tables

Table IA.1. Persistence of the set of stocks held

Previous Quarters

AUM Percentile 1 2 3 4 5 6 7 8 9 10 11

1 89.3 91.0 91.6 92.0 92.3 92.5 92.7 92.9 93.0 93.1 93.2
2 90.4 91.9 92.4 92.9 93.1 93.3 93.5 93.6 93.8 93.9 94.0
3 90.8 92.2 92.7 93.1 93.4 93.6 93.8 93.9 94.1 94.2 94.2
4 90.7 92.2 92.8 93.1 93.4 93.7 93.9 94.1 94.2 94.3 94.4
5 89.8 91.4 92.1 92.5 92.9 93.2 93.4 93.5 93.8 93.9 94.0
6 88.6 90.2 91.0 91.6 92.0 92.4 92.7 93.0 93.2 93.4 93.5
7 89.8 91.3 92.0 92.5 92.9 93.2 93.5 93.7 93.9 94.1 94.2
8 90.2 91.6 92.3 92.8 93.1 93.5 93.8 94.0 94.2 94.3 94.4
9 91.1 92.5 93.1 93.7 94.1 94.4 94.6 94.9 95.0 95.2 95.3
10 93.8 94.8 95.4 95.7 96.0 96.3 96.4 96.5 96.7 96.7 96.8

Table IA.1 shows the persistence of the set of stocks held by investors for up to 11 previous quarters,
coinciding with our empirical definition of the investment universe. For a given AUM decile, column n
shows the pooled cross-institution-time median of the percentage of stocks held today that were already
held at any point during the previous n quarters. It extends Table 1 from Koijen and Yogo (2019) to our
sample period, 2001–2020.
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Table IA.2. Summary statistics of aggregate elasticity Eagg with 1-year
lagged AUM instrument

Panel A: Statistics of average elasticity across stocks

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.452 0.396 0.456 0.524
Fixed elasticity 0.39 0.358 0.389 0.443

Panel B: Regression coefficient (by dates) of elasticity on size

Average 25th pct. Median 75th pct.

Elasticity Eagg −0.0804 −0.0893 −0.0742 −0.0686
Fixed elasticity −0.0286 −0.0307 −0.0273 −0.0249

Panel C: Residual cross-sectional standard deviation of elasticity

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.0434 0.0367 0.0407 0.0474
Fixed elasticity 0.0842 0.0739 0.0828 0.0915

Table IA.2 presents statistics of the aggregate elasticity Eagg,k,t using the instrument based on 1-year
lagged AUM. We estimate the elasticities in the model and in a specification with fixed elasticities (χ = 0
as in Koijen and Yogo (2019)). Panel A has summary statistics of the average elasticity by date. Panel
B shows summary statistics of the coefficient βt from the the regression Eagg,k,t = αt + βtpk,t + εk,t by
date. Panel C reports summary statistics of the cross-sectional standard deviation of the residual from
the regression described in Panel B. The sample period is 2001–2020.
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Table IA.3. Summary statistics of aggregate elasticity Eagg based on AUM-
weighted regressions

Panel A: Statistics of average elasticity across stocks

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.515 0.451 0.507 0.605
Fixed elasticity 0.39 0.358 0.389 0.443

Panel B: Regression coefficient (by dates) of elasticity on size

Average 25th pct. Median 75th pct.

Elasticity Eagg −0.0942 −0.106 −0.086 −0.0793
Fixed elasticity −0.0286 −0.0307 −0.0273 −0.0249

Panel C: Residual cross-sectional standard deviation of elasticity

Average 25th pct. Median 75th pct.

Elasticity Eagg 0.0509 0.0428 0.0482 0.0574
Fixed elasticity 0.0842 0.0739 0.0828 0.0915

Table IA.3 presents statistics of the aggregate elasticity Eagg,k,t using the AUM-weighted model. We
estimate the elasticities in our AUM-weighted model and in a specification with fixed elasticities (χ = 0
as in Koijen and Yogo (2019)). Panel A has summary statistics of the average elasticity by date. Panel
B shows summary statistics of the coefficient βt from the the regression Eagg,k,t = αt + βtpk,t + εk,t by
date. Panel C reports summary statistics of the cross-sectional standard deviation of the residual from
the regression described in Panel B. The sample period is 2001–2020.
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Table IA.4. Change in aggregate stock-level elasticity Eagg,k on the active
share using estimates based on time-varying χ

Log Change in Elasticity

(1) (2) (3) (4) (5)

Change in Active share 0.297*** 0.377*** 0.361*** 0.341*** 0.320***
(0.057) (0.029) (0.028) (0.030) (0.071)

Date Fixed Effects Yes Yes Yes Yes
Stock Fixed Effects Yes
Controls Yes Yes

Estimator OLS OLS OLS OLS IV

N 47,748 47,748 47,100 47,748 10,619
R2 0.034 0.725 0.745 0.790 0.802
First-stage F statistic 9.444
First-stage p value 0.000

Table IA.4 reports a panel regression of annual log change in stock level elasticity Eagg,k on the annual log
change in the active share |Activek|. We use elasticity estimates from a model with quarterly estimates of
χ. Column 2 adds date fixed effects. Column 3 adds stock fixed effects. Column 4 uses date fixed effects
and controls for lagged book equity and annual log changes of log book equity. Column 5 instruments the
log change in the active share |Activek| between Q1 and Q2 in any given year by two indicator variables
corresponding to stocks switching between Russell 1000 and 2000 in either direction. In this column, the
sample is restricted to stocks with CRSP market capitalization ranked between 500 to 1500 as of the end of
Q1. The sample period is 2001–2020, excluding 4 quarters before 2004 where the estimation of χ does not
converge, for columns 1-4, and 2007–2020 for column 5. Standard errors are 2-way clustered by date and
stock.
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Table IA.5. Change in aggregate stock-level elasticity Eagg,k on the active
share around Russell index reconstitution

Log Change in Elasticity Log Change in Active share

(1) (2) (3) (4)

Log Change in Active share 0.346*** 0.351***
(0.054) (0.017)

Log Change in Book Equity -0.910*** -0.910*** -0.904*** 0.018
(0.053) (0.053) (0.055) (0.018)

Lagged Book Equity 0.019* 0.019* 0.020** 0.003*
(0.009) (0.009) (0.009) (0.002)

Switch from Russell 2000 to 1000 0.015*** 0.035***
(0.004) (0.008)

Switch from Russell 1000 to 2000 -0.010* -0.043***
(0.005) (0.012)

Date Fixed Effects Yes Yes Yes Yes

Estimator IV OLS OLS OLS

N 10,619 10,619 10,619 10,619
R2 0.696 0.696 0.601 0.090
First-stage F statistic 9.444
First-stage p value 0.000

Table IA.5 reports a panel regression of log change in stock level elasticity Eagg,k on the log change in the
active share |Activek| around Russell index reconstitution, in particular between end of Q2 and Q1, from
2007 to 2020. The sample is restricted to stocks with CRSP market capitalization ranked between 500 to
1500 as of the end of Q1. The active share |Activek| is instrumented by two indicator variables corresponding
to stocks switching between Russell 1000 and 2000 in either direction. We use the estimates for Eagg,k from
the model with a constant value of χ over time. Columns 2 and 3 show the corresponding OLS and reduced-
form regressions, respectively. Column 4 is the first-stage regression. Standard errors are clustered by date
and stock.
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Table IA.6. First Stage Regression of Aggregate Elasticity Eagg,k on the

Elasticity Instrument Êagg,k

Elasticity Eagg,k
(1) (2)

Instrument Êagg,k 0.615***
(0.039)

Date Fixed Effects Yes Yes
Date Fixed Effects × Log Book Equity Yes Yes
Date Fixed Effects × Log Book Equity Squared Yes Yes

N 222,359 222,359
R2 0.944 0.954
Within-R2 0.171

Table IA.6 reports the first-stage regression of the aggregate elasticity Eagg,k on the elasticity instrument

Êagg,k for Table 5. Column (1) reports the R2 coefficient only based on fixed effects and controls, whereas

column (2) adds the instrument Êagg,k to the regression and reports the Within-R2 coefficient. All variables
are demeaned and standardized for each date. Observations are weighted by lagged market equity. We follow
our main specification for the estimation of elasticities, add time-fixed effects, and control non-linearly for
book equity. The sample period starts in 2001 and ends in 2020. Standard errors are clustered by date and
stock.
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Figure IA.2. Effect of an increase in passive investing.
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Figure IA.3. Time-series of the pass-through from a change in the active
share. Figure IA.3 shows the time-series of the pass-through of a change in the active
share to the aggregate elasticity. The pass-through in black combines quarterly esti-
mates of the degree of strategic response χ with the active share for each date between
2001 and 2020, as shown in Figure 5, based on equation (27). The green line shows
annual estimates of the passthrough based on annual estimates of χ and the within-
year average active share. The time-series average of the quarterly pass-through is 0.32
(dashed red line).
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Figure IA.4. Share of passive and active funds. Figure IA.4 shows the share of

domestic mutual funds and ETFs as a fraction of the US stock market capitalization for passive

funds (black solid line) and active funds (blue dashed line).
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Figure IA.5. Net assets of passive and active funds. Figure IA.5 shows the
net assets of domestic mutual funds and ETFs in trillions of dollars (year-end) for
passive funds (black solid line) and active funds (blue dashed line). Source: Investment
Company Institute (2020).
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Figure IA.6. Distribution of individual-specific elasticities E ik. Figure IA.6
shows the quantiles of the distribution of individual elasticities E ik across investors
for each stock and each date. We average the quantiles for each date to plot their
time series. The black bold line is the average across investors. The two thin grey
lines represent the 25th and 75th percentiles. The two dashed grey lines represent the
10th and 90th percentiles. And the solid blue line represents the average individual
elasticities of the household investor.
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Figure IA.7. Decomposition of the change in aggregate elasticity based on
estimates from a model using lagged AUM for instruments. Figure IA.7 shows
the decomposition derived in equation (29) over time, based on elasticities estimated
from the model using 1-year lagged AUM for constructing instruments. We compute
each term of the decomposition for each date and accumulate the changes over time.
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Figure IA.8. Decomposition of the change in aggregate elasticity based
on AUM-weighted estimates. Figure IA.8 shows the decomposition derived in
equation (29) over time, based on elasticities estimated from the AUM-weighted model.
We compute each term of the decomposition for each date and accumulate the changes
over time.
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